Radius of the $\pi$-meson and analytic properties of its form factor
Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 3, pp. 328-334
Cet article a éte moissonné depuis la source Math-Net.Ru
By solving the extremal problem for the functional $$ \Phi\{F,f\}=\int_{4m_{\pi^2}}^{\infty}f(t)|F_\pi(t)|^2\,dt, $$ where $f(t)$ is a given position function and $F_\pi(t)$ is the form factor of the $\pi$-meson withknown analytic properties, upper bounds are established for the radius of the $\pi$-meson and the behavior of its form factor in the space-like region ($t\leqslant 0$). These are determined by the values of the form-factor modulus in the annihilation channel ($t\geqslant 4m_{\pi^2}$). It is assumed on the basis of experiments at Novosibirsk and Orsay with colliding beams in the interval $4m_{\pi^2} (BeV)$^2$ that the form factor can be represented by the Breit–Wigner formula, it is also assumed that the modulus of the form factor for $t\gtrsim1$ (BeV)$^2$ does not exceed a certain constant value. The following results are then obtained: $r_{\max}=0{,}69\pm0{,}14$ (Novosibirsk) and $r_{\max}=0{,}9\pm0{,}06$ (Orsay).
@article{TMF_1971_6_3_a2,
author = {V. Z. Baluni},
title = {Radius of~the $\pi$-meson and analytic properties of~its form factor},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {328--334},
year = {1971},
volume = {6},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_6_3_a2/}
}
V. Z. Baluni. Radius of the $\pi$-meson and analytic properties of its form factor. Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 3, pp. 328-334. http://geodesic.mathdoc.fr/item/TMF_1971_6_3_a2/
[1] Nguen Van Kheu, YaF, 7, 5; (1968), 1111
[2] V. Baluni, Nguen Van Kheu, V. A. Suleimanov, YaF, 9 (1969), 635
[3] V. Baluni, Preprint ITF-69-15, Kiev, 1969
[4] B. V. Geshkenbein, YaF, 9, 6; (1969), 1232
[5] Dao Vong Dyg, Nguen Van Kheu, TMF, 3 (1969), 178
[6] Zh. E. Ogustin, Seminar po vektornym mezonam i elektromagnitnym vzaimodeistviyam (Dubna, 23–26 sentyabrya, 1969)
[7] G. Sege, Ortogonalnye mnogochleny, Fizmatgiz, 1962
[8] N. N. Meiman, ZhETF, 44, 4; (1963), 1228 | MR | Zbl
[9] A. A. Logunov, Nguen Van Kheu, TMF, 1 (1970), 375
[10] C. W. Akerlof et all., Phys. Rev., 163 (1967), 1482 | DOI