Radius of~the $\pi$-meson and analytic properties of~its form factor
Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 3, pp. 328-334
Voir la notice de l'article provenant de la source Math-Net.Ru
By solving the extremal problem for the functional
$$
\Phi\{F,f\}=\int_{4m_{\pi^2}}^{\infty}f(t)|F_\pi(t)|^2\,dt,
$$
where $f(t)$ is a given position function and $F_\pi(t)$ is the form factor of the $\pi$-meson withknown
analytic properties, upper bounds are established for the radius of the $\pi$-meson and the behavior
of its form factor in the space-like region ($t\leqslant 0$). These are determined by the values
of the form-factor modulus in the annihilation channel ($t\geqslant 4m_{\pi^2}$). It is assumed on the
basis of experiments at Novosibirsk and Orsay with colliding beams in the interval
$4m_{\pi^2}$ (BeV)$^2$ that the form factor can be represented by the Breit–Wigner formula, it is
also assumed that the modulus of the form factor for
$t\gtrsim1$ (BeV)$^2$ does not exceed a certain
constant value. The following results are then obtained:
$r_{\max}=0{,}69\pm0{,}14$ (Novosibirsk)
and $r_{\max}=0{,}9\pm0{,}06$ (Orsay).
@article{TMF_1971_6_3_a2,
author = {V. Z. Baluni},
title = {Radius of~the $\pi$-meson and analytic properties of~its form factor},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {328--334},
publisher = {mathdoc},
volume = {6},
number = {3},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_6_3_a2/}
}
V. Z. Baluni. Radius of~the $\pi$-meson and analytic properties of~its form factor. Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 3, pp. 328-334. http://geodesic.mathdoc.fr/item/TMF_1971_6_3_a2/