Equations for space-time and time correlation functions and proof of the equivalence of results of the Chapman–Enskog and time correlation methods
Teoretičeskaâ i matematičeskaâ fizika, Tome 5 (1970) no. 1, pp. 125-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the problem of determining the space-time or time correlation functions in a many-body classical system. The general correlation function of dynamical variables of a binary type (it is precisely these functions that are encountered in applications) is expressed in terms of the first two terms of a sequence of functions that depend on an increasing number of arguments and satisfy Bogolyubov's chain of equations with known initial data. In the lowest order in the density the correlation function can be expressed solely in terms of the first function of the sequence. This function is the solution of the initial-value problem for the linearized Boltzmann equation. An investigation is made of the initial-value problems for the correlation functions that determine the transport coefficients of simple and multicomponent gases. This investigation renders it possible to give a simple, complete, and rigorous proof of the results of the Chapman–Enskog and correlation function methods. The proof is based on the well-known properties of the linearized collision operator and it is possible to avoid the divergences encountered in other investigations.
@article{TMF_1970_5_1_a11,
     author = {A. D. Khon'kin},
     title = {Equations for space-time and time correlation functions and proof of the equivalence of results of the {Chapman{\textendash}Enskog} and time correlation methods},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {125--135},
     year = {1970},
     volume = {5},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_5_1_a11/}
}
TY  - JOUR
AU  - A. D. Khon'kin
TI  - Equations for space-time and time correlation functions and proof of the equivalence of results of the Chapman–Enskog and time correlation methods
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 125
EP  - 135
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_5_1_a11/
LA  - ru
ID  - TMF_1970_5_1_a11
ER  - 
%0 Journal Article
%A A. D. Khon'kin
%T Equations for space-time and time correlation functions and proof of the equivalence of results of the Chapman–Enskog and time correlation methods
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 125-135
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1970_5_1_a11/
%G ru
%F TMF_1970_5_1_a11
A. D. Khon'kin. Equations for space-time and time correlation functions and proof of the equivalence of results of the Chapman–Enskog and time correlation methods. Teoretičeskaâ i matematičeskaâ fizika, Tome 5 (1970) no. 1, pp. 125-135. http://geodesic.mathdoc.fr/item/TMF_1970_5_1_a11/

[1] S. Chepmen, T. Kauling, Matematicheskaya teoriya neodnorodnykh gazov, IL, 1960 | MR

[2] Dzh. Girshfelder, Ch. Kertis, R. Berd, Molekulyarnaya teoriya gazov i zhidkostei, IL, 1961

[3] A. D. Khonkin., “Zakony perenosa v gazovykh smesyakh”, Zhurnal prikladnoi matematiki i tekhn. fiziki, 1970, no. 4

[4] M. J. H. Ernst, Transport coefficients from time-correlation functions, Thesis, Amsterdam, 1964

[5] M. J. H. Ernst, J. R. Dorfman, E. G. D. Cohen, Physica, 31 (1964), 493 | DOI

[6] R. Zwanzig, Phys. Rev., 129 (1963), 486 | DOI | MR | Zbl

[7] A. D. Khonkin, Kandid. diss., Moskva, 1969

[8] A. D. Khonkin, Uravneniya dlya prostranstvenno-vremennykh korrelyatsionnykh funktsii, Doklad na 3-i Vsesoyuznoi konferentsii po dinamike razrezhennykh gazov (Novosibirsk, 1969)

[9] A. D. Khonkin, Vychislenie prostranstvenno-vremennykh korrelyatsionnykh funktsii v boltsmanovskom predele, Doklad na 3-i Vsesoyuznoi konferentsii po dinamike razrezhennykh gazov (Novosibirsk, 1969)

[10] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, 1946 | MR

[11] V. V. Tolmachev, DAN SSSR, 105 (1955), 439 ; 112 (1957), 842 | Zbl | Zbl

[12] A. D. Khonkin, DAN SSSR, 190:3 (1970)

[13] H. Grad, Phys. Fluids, 6 (1963), 147 | DOI | MR | Zbl

[14] J. A. McLennan, Adv. Chem. Phys., 5 (1963), 261 | DOI

[15] A. D. Khonkin, DAN SSSR, 183 (1968), 1285