Upper and lower limits of the radius of elementary particles
Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 2, pp. 178-182
Voir la notice de l'article provenant de la source Math-Net.Ru
Expression are found for the upper and lower limits of the radius of elementary particles.
These expressions contain the value of the modulus of the form factor on the cut. To this
end, the solution was found of the corresponding extremal problem of the theory of analytic
functions. If the modulus of the form factor of a $\pi$-meson can be expressed by a resonance
formula of the Breit–Wigner type corresponding to a $\rho$-meson, the results obtained show
that the radius of the $\pi$-meson is $\sqrt{\langle r^2\rangle}\approx(0.62\pm0.12)\mathrm F$.
@article{TMF_1970_3_2_a3,
author = {Dao Vong Dyc and Nguyen Van Hieu},
title = {Upper and lower limits of the radius of elementary particles},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {178--182},
publisher = {mathdoc},
volume = {3},
number = {2},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a3/}
}
TY - JOUR AU - Dao Vong Dyc AU - Nguyen Van Hieu TI - Upper and lower limits of the radius of elementary particles JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1970 SP - 178 EP - 182 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a3/ LA - ru ID - TMF_1970_3_2_a3 ER -
Dao Vong Dyc; Nguyen Van Hieu. Upper and lower limits of the radius of elementary particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 2, pp. 178-182. http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a3/