Upper and lower limits of the radius of elementary particles
Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 2, pp. 178-182

Voir la notice de l'article provenant de la source Math-Net.Ru

Expression are found for the upper and lower limits of the radius of elementary particles. These expressions contain the value of the modulus of the form factor on the cut. To this end, the solution was found of the corresponding extremal problem of the theory of analytic functions. If the modulus of the form factor of a $\pi$-meson can be expressed by a resonance formula of the Breit–Wigner type corresponding to a $\rho$-meson, the results obtained show that the radius of the $\pi$-meson is $\sqrt{\langle r^2\rangle}\approx(0.62\pm0.12)\mathrm F$.
@article{TMF_1970_3_2_a3,
     author = {Dao Vong Dyc and Nguyen Van Hieu},
     title = {Upper and lower limits of the radius of elementary particles},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {178--182},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a3/}
}
TY  - JOUR
AU  - Dao Vong Dyc
AU  - Nguyen Van Hieu
TI  - Upper and lower limits of the radius of elementary particles
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 178
EP  - 182
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a3/
LA  - ru
ID  - TMF_1970_3_2_a3
ER  - 
%0 Journal Article
%A Dao Vong Dyc
%A Nguyen Van Hieu
%T Upper and lower limits of the radius of elementary particles
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 178-182
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a3/
%G ru
%F TMF_1970_3_2_a3
Dao Vong Dyc; Nguyen Van Hieu. Upper and lower limits of the radius of elementary particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 3 (1970) no. 2, pp. 178-182. http://geodesic.mathdoc.fr/item/TMF_1970_3_2_a3/