Statistical theory of thermal diffusion of Brownian particles
Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 2, pp. 275-280
Cet article a éte moissonné depuis la source Math-Net.Ru
Brownian motion in a fluid with a temperature gradient is investigated by using Luttinger's method of introducing auxiliary external fields. The Einstein relation for the diffusion coefficient $D=kT/\zeta$ and a similar relation for the thermal diffusion coefficient $D_\mathrm T=\displaystyle n_\sigma kT\frac{1+\eta/kT}{\zeta}$ are obtained ($n_\sigma$ is the density of the Brownian particles, $\zeta$ is the friction constant, and $\eta$ is the heat drag coefficient of the Brownian particles). The expressions obtained are compared with the results of other works on diffusion of Brownian particles in a fluid with a temperature gradient.
@article{TMF_1969_1_2_a9,
author = {A. G. Bashkirov},
title = {Statistical theory of thermal diffusion of {Brownian} particles},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {275--280},
year = {1969},
volume = {1},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1969_1_2_a9/}
}
A. G. Bashkirov. Statistical theory of thermal diffusion of Brownian particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 2, pp. 275-280. http://geodesic.mathdoc.fr/item/TMF_1969_1_2_a9/
[1] G. Nicolis, J. Chem. Phys., 43 (1965), 1110 | DOI
[2] A. L. Efros, ZhETF, 50 (1966), 809
[3] J. Luttinger, Phys. Rev., 135 (1964), 1505A | DOI | MR
[4] D. N. Zubarev, A. G. Bashkirov, Phys. Letters, 25A (1967), 202 ; Physica, 39 (1968), 334 | DOI | DOI
[5] D. N. Zubarev, DAN SSSR, 140 (1961), 92 ; 162 (1965), 794 | Zbl | MR
[6] J. McLennan, Adv. Chem. Phys., 5 (1963), 261 | DOI
[7] G. Goldstein, Klassicheskaya mekhanika, § 3.4, Gostekhizdat, 1957