Spectrum of molecular electron energy operators in spaces of functions of specified symmetry
Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 2, pp. 295-302

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of the molecular electron energy operator $H$ is investigated for the case of molecules with fixed nuclei situated such that transformations of the point group $G$ carry identical nuclei into each other. On the spaces of electron wavefuuctions corresponding to the product of irreducible representations of the permutation groups $S_n$ and $G$, the limiting spectrum $H$ is found, and the existence of an infinite number of points of the discrete spectrum is proved for neutral molecules and for positive molecular ions.
@article{TMF_1969_1_2_a12,
     author = {G. M. Zhislin and E. L. Mandel'},
     title = {Spectrum of molecular electron energy operators in spaces of functions of specified symmetry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {295--302},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1969_1_2_a12/}
}
TY  - JOUR
AU  - G. M. Zhislin
AU  - E. L. Mandel'
TI  - Spectrum of molecular electron energy operators in spaces of functions of specified symmetry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1969
SP  - 295
EP  - 302
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1969_1_2_a12/
LA  - ru
ID  - TMF_1969_1_2_a12
ER  - 
%0 Journal Article
%A G. M. Zhislin
%A E. L. Mandel'
%T Spectrum of molecular electron energy operators in spaces of functions of specified symmetry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1969
%P 295-302
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1969_1_2_a12/
%G ru
%F TMF_1969_1_2_a12
G. M. Zhislin; E. L. Mandel'. Spectrum of molecular electron energy operators in spaces of functions of specified symmetry. Teoretičeskaâ i matematičeskaâ fizika, Tome 1 (1969) no. 2, pp. 295-302. http://geodesic.mathdoc.fr/item/TMF_1969_1_2_a12/