A greatest common divisor identity
The Teaching of Mathematics, XXI (2018) no. 2, p. 73 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we present an identity involving the greatest common divisors of almost all possible subproducts of $n$ nonzero integers. Then we prove this identity, with the help of the fundamental theorem of arithmetic, and an identity concerning the minimum function $\min$. As a consequence, a new formula for the least common multiple is derived.
Classification : 97F60 F64
Keywords: Greatest common divisor, fundamental theorem of arithmetic, least common multiple.
@article{TM2_2018_XXI_2_a1,
     author = {Yuanhong Zhi},
     title = {A greatest common divisor identity},
     journal = {The Teaching of Mathematics},
     pages = {73 },
     publisher = {mathdoc},
     volume = {XXI},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM2_2018_XXI_2_a1/}
}
TY  - JOUR
AU  - Yuanhong Zhi
TI  - A greatest common divisor identity
JO  - The Teaching of Mathematics
PY  - 2018
SP  - 73 
VL  - XXI
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM2_2018_XXI_2_a1/
LA  - en
ID  - TM2_2018_XXI_2_a1
ER  - 
%0 Journal Article
%A Yuanhong Zhi
%T A greatest common divisor identity
%J The Teaching of Mathematics
%D 2018
%P 73 
%V XXI
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM2_2018_XXI_2_a1/
%G en
%F TM2_2018_XXI_2_a1
Yuanhong Zhi. A greatest common divisor identity. The Teaching of Mathematics, XXI (2018) no. 2, p. 73 . http://geodesic.mathdoc.fr/item/TM2_2018_XXI_2_a1/