Limits of composite functions
The Teaching of Mathematics, XII (2009) no. 1, p. 1
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Finding $\lim\limits_{x_0}g(f(x))$, first the following two limits
$
(i)\quad łim_{x_0} f(x)=y_0 \qquad (ii)\quad łim_{y_0} g(y)=lpha
$
are found and then, it is taken that $\lim\limits_{x_0} g(f(x))=\alpha$. The existence of the limits under (i) and (ii)
is the basis for this method, which is not legitimate in general. In this notice we give necessary
and sufficient conditions for the legitimacy of this method.
Classification :
1AMS00A35 2ZDMI25
Keywords: Composite function, introduction of a new variable.
Keywords: Composite function, introduction of a new variable.
@article{TM2_2009_XII_1_a0,
author = {Milosav M. Marjanovi\'c and Zoran Kadelburg},
title = {Limits of composite functions},
journal = {The Teaching of Mathematics},
pages = {1 },
publisher = {mathdoc},
volume = {XII},
number = {1},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM2_2009_XII_1_a0/}
}
Milosav M. Marjanović; Zoran Kadelburg. Limits of composite functions. The Teaching of Mathematics, XII (2009) no. 1, p. 1 . http://geodesic.mathdoc.fr/item/TM2_2009_XII_1_a0/