Die Entdeckungsgeschichte und die Ausnahmestellung Einer Besondered Zahl: e=2,71828182845904523536\dots
The Teaching of Mathematics, II (1999) no. 2, p. 105
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Mathematics pupils first learn about the irrational numbers
$\pi$ and $e$ at the secondary school level. While the appearance of $\pi$ in
simple geometrical formulas makes it easy for pupils to grasp its special
importance, the significance of $e$ is less clear. The nature of $e$ can best
be understood from a historical perspective, In the sixteenth century, work on
various mathematical problems led, along different paths, to the discovery
of~$e$. In this article, I will outline these paths, and propose that
describing them to pupils is the best way to help them understand the
uniqueness of~$e$.
Classification :
00A35
Keywords: Irrational numbers, e, Napier's logarithms.
Keywords: Irrational numbers, e, Napier's logarithms.
@article{TM2_1999_II_2_a2,
author = {Stefan Krauss},
title = {Die {Entdeckungsgeschichte} und die {Ausnahmestellung} {Einer} {Besondered} {Zahl:} e=2,71828182845904523536\dots},
journal = {The Teaching of Mathematics},
pages = {105 },
year = {1999},
volume = {II},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM2_1999_II_2_a2/}
}
Stefan Krauss. Die Entdeckungsgeschichte und die Ausnahmestellung Einer Besondered Zahl: e=2,71828182845904523536\dots. The Teaching of Mathematics, II (1999) no. 2, p. 105 . http://geodesic.mathdoc.fr/item/TM2_1999_II_2_a2/