Ordinal sums of rectangular semigroups with outerplanar Cayley graphs and their generalizations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 251-264 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

There are several equivalent definitions of the class of semigroups which we call rectangular semigroups. We will use the term rectangular semigroup to denote direct products of singular semigroups. A semigroup is called singular if it is a left zero semigroup or a right zero semigroup. A characteristic property of ordinal sums of rectangular semigroups with planar Cayley graphs is known. This article presents the characteristic properties of ordinal sums of rectangular semigroups with outerplanar Cayley graphs. In addition, the possibilities of their generalization to generalized outerplanar Cayley graphs of semigroups in the same class are analyzed. Namely, a necessary and sufficient condition for the existence of an outerplane embedding in the plane or generalized outerplane embedding in the plane of the Cayley graphs of the ordinal sums of rectangular semigroups is proved. The case when the Cayley graphs of such semigroups turn out to be generalized outerplanar, but not outerplanar, is considered in detail. The paper considers generalized outerplanar graphs characterized by Jiří Sedláček.
Keywords: outerplanar graph, semigroups with outerplanar Cayley graphs, generalized outerplanar graphs, Sedláček graphs, semigroups with planar Cayley graphs.
@article{TIMM_2024_30_4_a19,
     author = {D. V. Solomatin},
     title = {Ordinal sums of rectangular semigroups with outerplanar {Cayley} graphs and their generalizations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {251--264},
     year = {2024},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a19/}
}
TY  - JOUR
AU  - D. V. Solomatin
TI  - Ordinal sums of rectangular semigroups with outerplanar Cayley graphs and their generalizations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 251
EP  - 264
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a19/
LA  - ru
ID  - TIMM_2024_30_4_a19
ER  - 
%0 Journal Article
%A D. V. Solomatin
%T Ordinal sums of rectangular semigroups with outerplanar Cayley graphs and their generalizations
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 251-264
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a19/
%G ru
%F TIMM_2024_30_4_a19
D. V. Solomatin. Ordinal sums of rectangular semigroups with outerplanar Cayley graphs and their generalizations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 251-264. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a19/

[1] Klement E.P., Mesiar R., Pap E., “Triangular norms as ordinal sums of semigroups in the sense of A. H. Clifford”, Semigroup Forum, 65 (2002), 71–82 | DOI | MR | Zbl

[2] Su Y., Zong W., Mesiarová-Zemánková A., “Constructing uninorms via ordinal sums in the sense of A. H. Clifford”, Semigroup Forum, 105 (2022), 328–344 | DOI | MR | Zbl

[3] Maschke H., “The representation of finite groups, especially of the rotation groups of the regular bodies of three- and four-dimensional space, by Cayley's color diagrams”, Amer. J. Math., 18:2 (1896), 156–194 | DOI | MR

[4] Knauer K., Knauer U., “On planar right groups”, Semigroup Forum, 92:1 (2015), 142–157 | DOI | MR

[5] Knauer K., Knauer U., Algebraic graph theory. Morphisms, monoids and matrices, Ser. De Gruyter Studies in Mathematics, 41, 2nd edition, Walter de Gruyter GmbH, Berlin; Boston, 2019, 349 pp. | DOI | MR

[6] Zhang X., “Clifford semigroups with genus zero, semigroups, acts and categories with applications to graphs”, Proc. Int. Conf. Semigroups, acts and categories with applications to graphs, v. 3, Estonian Math. Soc., Tartu, 2008, 151–160 | MR | Zbl

[7] Zhu Y., “Generalized Cayley graphs of semigroups I”, Semigroup Forum, 84 (2012), 131–143 | DOI | MR | Zbl

[8] Solomatin D.V., “Issledovaniya polugrupp s planarnymi grafami Keli: rezultaty i problemy”, Prikl. diskret. matematika, 2021, no. 54, 5–57 | DOI | MR | Zbl

[9] Solomatin D.V., “Pryamye proizvedeniya tsiklicheskikh monoidov, dopuskayuschie vneshneplanarnye grafy Keli i ikh obobscheniya”, Vestn. TvGU. Ser.: Prikladnaya matematika, 2023, no. 4, 43–56 | DOI

[10] Adyan S.I., “Algoritmicheskaya nerazreshimost problem raspoznavaniya nekotorykh svoistv grupp”, Dokl. AN SSSR, 103:4 (1955), 533–535 | MR | Zbl

[11] Shevrin L.N., “Polugruppy”, Obschaya algebra, v. 2, gl. IV, ed. pod red. L.A. Skornyakova, Nauka, M., 1991, 11–191

[12] Harary F., Graph theory, Advanced book program series, Westview Press, Boulder, 1994, 288 pp.

[13] Sedláček\;J., “On a generalization of outerplanar graphs”, Časopis Pěst. Mat., 2:113 (1988), 213–218 | MR | Zbl

[14] Ding G., Dziobiak S., “Excluded-minor characterization of apex-outerplanar graphs”, Graphs and Combinatorics, 32:2 (2016), 583–627 | DOI | MR | Zbl