@article{TIMM_2024_30_4_a19,
author = {D. V. Solomatin},
title = {Ordinal sums of rectangular semigroups with outerplanar {Cayley} graphs and their generalizations},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {251--264},
year = {2024},
volume = {30},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a19/}
}
TY - JOUR AU - D. V. Solomatin TI - Ordinal sums of rectangular semigroups with outerplanar Cayley graphs and their generalizations JO - Trudy Instituta matematiki i mehaniki PY - 2024 SP - 251 EP - 264 VL - 30 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a19/ LA - ru ID - TIMM_2024_30_4_a19 ER -
D. V. Solomatin. Ordinal sums of rectangular semigroups with outerplanar Cayley graphs and their generalizations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 4, pp. 251-264. http://geodesic.mathdoc.fr/item/TIMM_2024_30_4_a19/
[1] Klement E.P., Mesiar R., Pap E., “Triangular norms as ordinal sums of semigroups in the sense of A. H. Clifford”, Semigroup Forum, 65 (2002), 71–82 | DOI | MR | Zbl
[2] Su Y., Zong W., Mesiarová-Zemánková A., “Constructing uninorms via ordinal sums in the sense of A. H. Clifford”, Semigroup Forum, 105 (2022), 328–344 | DOI | MR | Zbl
[3] Maschke H., “The representation of finite groups, especially of the rotation groups of the regular bodies of three- and four-dimensional space, by Cayley's color diagrams”, Amer. J. Math., 18:2 (1896), 156–194 | DOI | MR
[4] Knauer K., Knauer U., “On planar right groups”, Semigroup Forum, 92:1 (2015), 142–157 | DOI | MR
[5] Knauer K., Knauer U., Algebraic graph theory. Morphisms, monoids and matrices, Ser. De Gruyter Studies in Mathematics, 41, 2nd edition, Walter de Gruyter GmbH, Berlin; Boston, 2019, 349 pp. | DOI | MR
[6] Zhang X., “Clifford semigroups with genus zero, semigroups, acts and categories with applications to graphs”, Proc. Int. Conf. Semigroups, acts and categories with applications to graphs, v. 3, Estonian Math. Soc., Tartu, 2008, 151–160 | MR | Zbl
[7] Zhu Y., “Generalized Cayley graphs of semigroups I”, Semigroup Forum, 84 (2012), 131–143 | DOI | MR | Zbl
[8] Solomatin D.V., “Issledovaniya polugrupp s planarnymi grafami Keli: rezultaty i problemy”, Prikl. diskret. matematika, 2021, no. 54, 5–57 | DOI | MR | Zbl
[9] Solomatin D.V., “Pryamye proizvedeniya tsiklicheskikh monoidov, dopuskayuschie vneshneplanarnye grafy Keli i ikh obobscheniya”, Vestn. TvGU. Ser.: Prikladnaya matematika, 2023, no. 4, 43–56 | DOI
[10] Adyan S.I., “Algoritmicheskaya nerazreshimost problem raspoznavaniya nekotorykh svoistv grupp”, Dokl. AN SSSR, 103:4 (1955), 533–535 | MR | Zbl
[11] Shevrin L.N., “Polugruppy”, Obschaya algebra, v. 2, gl. IV, ed. pod red. L.A. Skornyakova, Nauka, M., 1991, 11–191
[12] Harary F., Graph theory, Advanced book program series, Westview Press, Boulder, 1994, 288 pp.
[13] Sedláček\;J., “On a generalization of outerplanar graphs”, Časopis Pěst. Mat., 2:113 (1988), 213–218 | MR | Zbl
[14] Ding G., Dziobiak S., “Excluded-minor characterization of apex-outerplanar graphs”, Graphs and Combinatorics, 32:2 (2016), 583–627 | DOI | MR | Zbl