@article{TIMM_2024_30_3_a7,
author = {M. I. Gusev},
title = {On some properties of reachable sets for nonlinear systems with control constraints in $L_p$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {99--112},
year = {2024},
volume = {30},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a7/}
}
TY - JOUR AU - M. I. Gusev TI - On some properties of reachable sets for nonlinear systems with control constraints in $L_p$ JO - Trudy Instituta matematiki i mehaniki PY - 2024 SP - 99 EP - 112 VL - 30 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a7/ LA - ru ID - TIMM_2024_30_3_a7 ER -
M. I. Gusev. On some properties of reachable sets for nonlinear systems with control constraints in $L_p$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 99-112. http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a7/
[1] Kalman R.E., Ho Y.C., Narendra K.S., “Controllability of linear dynamical systems”, Contributions to Differential Equations, 1:2 (1963), 189–213 | MR | Zbl
[2] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp.
[3] Krasovskii N.N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp.
[4] Albrekht E.G., “O sblizhenii kvazilineinykh ob'ektov v regulyarnom sluchae”, Differents. uravneniya, 7:7 (1971), 1171–1178 | Zbl
[5] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp.
[6] Polyak B.T., “Sonvexity of the reachable set of nonlinear systems under $L_2$ bounded controls”, Dynamics of Continuous, Discrete and Impulsive Systems. Ser. A: Math. Anal., 11:2–3 (2004), 255–267 | MR | Zbl
[7] Gusev M.I., Zykov I.V., “On extremal properties of boundary points of reachable sets for a system with integrally constrained control”, IFAC-PapersOnLine, 50:1 (2017), 4082–4087 | DOI
[8] Patsko V.S., Trubnikov G.I., Fedotov A.A., “Reachable set of the Dubins car with an integral constraint on control”, Dokl. Math., 108, suppl. 1 (2023), S34–S41 | DOI | MR
[9] Rousse R., Garoche P.L., Henrion D., “Parabolic set simulation for reachability analysis of linear time invariant systems with integral quadratic constraint”, European J. Control, 58 (2021), 152–167 | DOI | MR | Zbl
[10] Guseinov K.G., Ozer O., Akyar E., Ushakov V.N., “The approximation of reachable sets of control systems with integral constraint on controls”, Nonlinear Differ. Equ. Appl., 14:1–2 (2007), 57–73 | DOI | MR | Zbl
[11] Huseyin N. , Huseyin A. and Guseinov K.G., “Approximations of the set of trajectories and integral funnel of the non-linear control systems with $L_p$ norm constraints on the control functions”, IMA J. Math. Contr. Inform., 39 (2022), 1213–1231 | DOI | MR | Zbl
[12] Guseinov Kh.G., Nazlipinar A.S., “On the continuity property of $L_p$ balls and an application”, J. Math. Anal. Appl., 335 (2007), 1347–1359 | DOI | MR | Zbl
[13] Dmitruk A.V., Milyutin A.A., Osmolovskii N.P., “Teorema Lyusternika i teoriya ekstremuma”, Uspekhi mat. nauk, 35:6 (1980), 11–46 | MR | Zbl
[14] Huseyin N., Huseyin A., Guseinov Kh.G., “On the robustness property of a control system described by an Urysohn type integral equation”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 27:3 (2021), 263–270 | DOI | MR
[15] Gusev Mikhail I., “Computing the reachable set boundary for an abstract control system: revisited”, Ural Math. J., 9:2 (2023), 99–108 | DOI | MR
[16] Pontryagin L.S., Boltyanskii V., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR
[17] Patsko V.S., Pyatko S.G., Fedotov A.A., “Three-dimensional reachability set for a nonlinear control system”, J. Comp. Syst. Sci. Intern., 42:3 (2003), 320–328 | MR | Zbl
[18] Xiao Q., Li L., Zhang J., Xu M., “Two-dimensional reachability of low-thrust spacecraft”, IEEE Transact. Aerospace Electr. Syst., 60:3 (2024), 3698–3706 | DOI
[19] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 472 pp.