On some properties of reachable sets for nonlinear systems with control constraints in $L_p$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 99-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper considers reachable sets at a given time for control-affine systems with integral control constraints in the space $L_p$ for $p>1$. The goal of the paper is to characterize controls leading to the boundary of reachable sets as solutions to extremal problems and to study the necessary optimality conditions in the form of the Pontryagin maximum principle for these controls. A reachable set is interpreted here as the image of the set of admissible controls under a nonlinear mapping defined by a dynamical system. We also study the application of the maximum principle to describe projections of a reachable set onto a subspace and its sections by a hyperplane. The dependence of a reachable set on the control resource is studied. The results obtained are illustrated using the example of linear systems. It is shown that in this case the optimality conditions for boundary controls are necessary and sufficient.
Keywords: control system, integral constraints, reachable set, nonlinear mapping, maximum principle.
@article{TIMM_2024_30_3_a7,
     author = {M. I. Gusev},
     title = {On some properties of reachable sets for nonlinear systems with control constraints in $L_p$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {99--112},
     year = {2024},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a7/}
}
TY  - JOUR
AU  - M. I. Gusev
TI  - On some properties of reachable sets for nonlinear systems with control constraints in $L_p$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 99
EP  - 112
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a7/
LA  - ru
ID  - TIMM_2024_30_3_a7
ER  - 
%0 Journal Article
%A M. I. Gusev
%T On some properties of reachable sets for nonlinear systems with control constraints in $L_p$
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 99-112
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a7/
%G ru
%F TIMM_2024_30_3_a7
M. I. Gusev. On some properties of reachable sets for nonlinear systems with control constraints in $L_p$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 99-112. http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a7/

[1] Kalman R.E., Ho Y.C., Narendra K.S., “Controllability of linear dynamical systems”, Contributions to Differential Equations, 1:2 (1963), 189–213 | MR | Zbl

[2] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp.

[3] Krasovskii N.N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp.

[4] Albrekht E.G., “O sblizhenii kvazilineinykh ob'ektov v regulyarnom sluchae”, Differents. uravneniya, 7:7 (1971), 1171–1178 | Zbl

[5] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp.

[6] Polyak B.T., “Sonvexity of the reachable set of nonlinear systems under $L_2$ bounded controls”, Dynamics of Continuous, Discrete and Impulsive Systems. Ser. A: Math. Anal., 11:2–3 (2004), 255–267 | MR | Zbl

[7] Gusev M.I., Zykov I.V., “On extremal properties of boundary points of reachable sets for a system with integrally constrained control”, IFAC-PapersOnLine, 50:1 (2017), 4082–4087 | DOI

[8] Patsko V.S., Trubnikov G.I., Fedotov A.A., “Reachable set of the Dubins car with an integral constraint on control”, Dokl. Math., 108, suppl. 1 (2023), S34–S41 | DOI | MR

[9] Rousse R., Garoche P.L., Henrion D., “Parabolic set simulation for reachability analysis of linear time invariant systems with integral quadratic constraint”, European J. Control, 58 (2021), 152–167 | DOI | MR | Zbl

[10] Guseinov K.G., Ozer O., Akyar E., Ushakov V.N., “The approximation of reachable sets of control systems with integral constraint on controls”, Nonlinear Differ. Equ. Appl., 14:1–2 (2007), 57–73 | DOI | MR | Zbl

[11] Huseyin N. , Huseyin A. and Guseinov K.G., “Approximations of the set of trajectories and integral funnel of the non-linear control systems with $L_p$ norm constraints on the control functions”, IMA J. Math. Contr. Inform., 39 (2022), 1213–1231 | DOI | MR | Zbl

[12] Guseinov Kh.G., Nazlipinar A.S., “On the continuity property of $L_p$ balls and an application”, J. Math. Anal. Appl., 335 (2007), 1347–1359 | DOI | MR | Zbl

[13] Dmitruk A.V., Milyutin A.A., Osmolovskii N.P., “Teorema Lyusternika i teoriya ekstremuma”, Uspekhi mat. nauk, 35:6 (1980), 11–46 | MR | Zbl

[14] Huseyin N., Huseyin A., Guseinov Kh.G., “On the robustness property of a control system described by an Urysohn type integral equation”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 27:3 (2021), 263–270 | DOI | MR

[15] Gusev Mikhail I., “Computing the reachable set boundary for an abstract control system: revisited”, Ural Math. J., 9:2 (2023), 99–108 | DOI | MR

[16] Pontryagin L.S., Boltyanskii V., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[17] Patsko V.S., Pyatko S.G., Fedotov A.A., “Three-dimensional reachability set for a nonlinear control system”, J. Comp. Syst. Sci. Intern., 42:3 (2003), 320–328 | MR | Zbl

[18] Xiao Q., Li L., Zhang J., Xu M., “Two-dimensional reachability of low-thrust spacecraft”, IEEE Transact. Aerospace Electr. Syst., 60:3 (2024), 3698–3706 | DOI

[19] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 472 pp.