Extremal shift in the problem of tracking a disturbance in a parabolic inclusion describing the two-phase Stefan problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 191-206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of tracking an unknown nonsmooth in time distributed disturbance of a parabolic inclusion describing the two-phase Stefan problem is studied. The problem is reduced to the problem of open-loop control of some appropriately chosen auxiliary system. The control in this system tracks the unknown disturbance in the mean square, and its construction is based on the results of inaccurate measurements of solutions to the given inclusion and to the auxiliary system. Two algorithms for solving the problem that are stable to noise and calculation errors are presented. The algorithms are based on an appropriate modification of Krasovskii's principle of extremal shift known in the theory of guaranteed control.
Keywords: disturbance tracking
Mots-clés : parabolic inclusion.
@article{TIMM_2024_30_3_a14,
     author = {V. I. Maksimov and Yu. S. Osipov},
     title = {Extremal shift in the problem of tracking a disturbance in a parabolic inclusion describing the two-phase {Stefan} problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {191--206},
     year = {2024},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a14/}
}
TY  - JOUR
AU  - V. I. Maksimov
AU  - Yu. S. Osipov
TI  - Extremal shift in the problem of tracking a disturbance in a parabolic inclusion describing the two-phase Stefan problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 191
EP  - 206
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a14/
LA  - ru
ID  - TIMM_2024_30_3_a14
ER  - 
%0 Journal Article
%A V. I. Maksimov
%A Yu. S. Osipov
%T Extremal shift in the problem of tracking a disturbance in a parabolic inclusion describing the two-phase Stefan problem
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 191-206
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a14/
%G ru
%F TIMM_2024_30_3_a14
V. I. Maksimov; Yu. S. Osipov. Extremal shift in the problem of tracking a disturbance in a parabolic inclusion describing the two-phase Stefan problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 3, pp. 191-206. http://geodesic.mathdoc.fr/item/TIMM_2024_30_3_a14/

[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[2] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp. | MR

[3] Polyak B.T., Scherbakov P.S., Robastnaya ustoichivost i upravlenie, Nauka, M., 2002, 303 pp.

[4] Chen W.H., Yang J., Guo L., Li H., “Disturbance-observer-basedcontrol and related methods: an overview”, IEEE Trans. Ind. Electron, 63:2 (2015), 1083–1095 | DOI | MR

[5] Yuan Y., Wang Z., Yu V., Guo L., Yang H., “Active disturbance rejection control for a pneumatic motion platform subject to actuator saturation: An extended state observer approach”, Automatica, 108 (2019), 353–361 | DOI | MR

[6] Hätönen J., Owens D.H., Feng K., “Basis functions and parameter optimization in high-order iterative learning control”, Automatica, 42:2 (2006), 287–294 | DOI | MR | Zbl

[7] Yu M., Chai S., “Adaptive iterative learning control for discrete-time nonlinear systems with multiply iteration-varying high-order internal models”, Int. J. Robust Nonlinear Control, 31:1 (2021), 7390–7408 | DOI | MR | Zbl

[8] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 286 pp.

[9] Lavrentev M.M., Romanov V.G., Shishatskii S.P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, Novosibirsk, 1980, 286 pp. | MR

[10] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 200 pp. | DOI

[11] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, London, 1995, 625 pp. | MR | Zbl

[12] Osipov Yu.S., Vasilev F.P., Potapov M.M., Osnovy metoda dinamicheskoi regulyarizatsii, MGU, M., 1999, 237 pp.

[13] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., “Dinamicheskie obratnye zadachi dlya parabolicheskikh sistem”, Differents. uravneniya, 36:5 (2000), 579–597 | DOI | MR | Zbl

[14] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, UrO RAN, Ekaterinburg, 2011, 292 pp.

[15] Osipov Yu.S., Pandolfi L., Maksimov V.I., “Problems of dynamic reconstruction and robust boundary control: the case od Dirichlet boundary conditions”, Journal of Inverse and Ill-Posed Problems, 9:2 (2001), 149–162 | DOI | MR | Zbl

[16] Osipov Yu.S., Maksimov V.I., “On dynamical input reconstruction in a distributed second order equation”, Journal of Inverse and Ill-Posed Problems, 29:5 (2021), 707–719 | DOI | MR | Zbl

[17] Brezis H., “Probl'emes unilat`eraux”, J. Math. Pures Appl., 51 (1972), 1–168 | MR | Zbl

[18] Barbu V., Optimal control of variational inequalities, Pitman, 1984, 298 pp. | MR | Zbl

[19] Tiba D., Optimal control of nonsmooth distributed parameter systems, Springer Verlag, Berlin, 1991 | DOI | MR

[20] Neittaanmaki N., Tiba D., Optimal control of nonlinear parabolic systems, Marcel Dekker, NY, 1994, 424 pp. | MR | Zbl