Package guidance problem for a fractional-order system
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 222-242 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of guaranteed closed-loop guidance to a given set at a given time is studied for a linear dynamical control system described by differential equations with a fractional derivative of the Caputo type. The initial state is a priori unknown, but belongs to a given finite set. The information on the position of the system is received online in the form of an observation signal. The solvability of the guidance problem for the control system is analyzed using the method of Osipov–Kryazhimskii program packages. The paper provides a brief overview of the results that develop the method of program packages and use it in guidance problems for various classes of systems. This method allows us to connect the solvability condition of the guaranteed closed-loop guidance problem for an original system with the solvability condition of the open-loop guidance problem for a special extended system. Following the technique of the method of program packages, a criterion for the solvability of the considered guidance problem is derived for a fractional-order system. In the case where the problem is solvable, a special procedure for constructing a guiding program package is given. The developed technique for analyzing the guaranteed closed-loop guidance problem and constructing a guiding control for an unknown initial state is illustrated by the example of a specific linear mechanical control system with a Caputo fractional derivative.
Keywords: control, incomplete information, linear systems, Caputo fractional derivative.
@article{TIMM_2024_30_2_a15,
     author = {P. G. Surkov},
     title = {Package guidance problem for a fractional-order system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {222--242},
     year = {2024},
     volume = {30},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a15/}
}
TY  - JOUR
AU  - P. G. Surkov
TI  - Package guidance problem for a fractional-order system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 222
EP  - 242
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a15/
LA  - ru
ID  - TIMM_2024_30_2_a15
ER  - 
%0 Journal Article
%A P. G. Surkov
%T Package guidance problem for a fractional-order system
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 222-242
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a15/
%G ru
%F TIMM_2024_30_2_a15
P. G. Surkov. Package guidance problem for a fractional-order system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 222-242. http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a15/

[1] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp.

[2] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and applications of fractional differential equations, Elsevier Science, NY, 2006, 540 pp. | MR | Zbl

[3] Krasovskii N.N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp.

[4] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[5] Subbotin A.I., Chentsov A.G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR

[6] Samko S.G., Kilbas A.A., Marichev O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp.

[7] Rossikhin Yu.A., Shitikova M.V., “Applications of fractional calculus to dynamic problem linear and nonlinear hereditary mechanics of solids”, Appl. Mech. Rev., 50:1 (1997), 15–67 | DOI

[8] Tarasov V.E., “Geometric interpretation of fractional-order derivative”, Fractional Calculus and Applied Analysis, 19:5 (2016), 1200–1221 | DOI | MR | Zbl

[9] Uchaikin V.V., Fractional derivatives for physicists and engineers, v. I, Background and theory, 2013 ; v. II, Applications, Springer, Heidelberg, 385 pp. | MR | Zbl | DOI

[10] Machtakova A.I., Petrov N.N., “O dvukh zadachakh presledovaniya gruppy ubegayuschikh v differentsialnykh igrakh s drobnymi proizvodnymi”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyut. nauki, 34:1 (2024), 65–79 | DOI | MR

[11] Gomoyunov M.I., “Fractional derivatives of convex Lyapunov functions and control problems in fractional order systems”, Fractional Calculus and Applied Analysis, 21:5 (2018), 1238–1261 | DOI | MR | Zbl

[12] Matychyn I., Onyshchenko V., “Time-optimal control of linear fractional systems with variable coefficients”, Internat. J. Appl. Math. Comp. Sci., 31:3 (2021), 375–386 | DOI | MR | Zbl

[13] Osipov Yu.S., “Pakety programm: podkhod k resheniyu zadach pozitsionnogo upravleniya s nepolnoi informatsiei”, Uspekhi mat. nauk, 61:4 (370) (2006), 25–76 | DOI | MR | Zbl

[14] Kryazhimskii A.V., Osipov Yu.S., “Idealizirovannye pakety programm i zadachi pozitsionnogo upravleniya s nepolnoi informatsiei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:3 (2009), 139–157 | MR

[15] Kryazhimskii A.V., Osipov Yu.S., “O razreshimosti zadach garantiruyuschego upravleniya dlya chastichno nablyudaemykh lineinykh dinamicheskikh sistem”, Tr. MIAN, 277 (2012), 152–167 | Zbl

[16] Kryazhimskii A.V., Strelkovskii N.V., “Programmnyi kriterii razreshimosti zadachi pozitsionnogo navedeniya s nepolnoi informatsiei. Lineinye upravlyaemye sistemy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 132–147 | MR

[17] Kryazhimskii A.V., Strelkovskii N.V., “Zadacha garantirovannogo pozitsionnogo navedeniya lineinoi upravlyaemoi sistemy k zadannomu momentu vremeni pri nepolnoi informatsii. Programmnyi kriterii razreshimosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 168–177 | MR

[18] Strelkovskii N.V., “Postroenie strategii garantirovannogo pozitsionnogo navedeniya dlya lineinoi upravlyaemoi sistemy pri nepolnoi informatsii”, Vestn. Moskov. un-ta. Ser. 15. Vychisl. matematika i kibernetika, 2015, no. 3, 27–34 | MR | Zbl

[19] Maksimov V.I., Surkov P.G., “O razreshimosti zadachi garantirovannogo paketnogo navedeniya na sistemu tselevykh mnozhestv”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyut. nauki, 27:2 (2017), 344–354 | DOI | MR | Zbl

[20] Orlov S.M., “Ob odnom klasse rasshirennykh zadach programmnogo upravleniya na tselevoe mnozhestvo”, Vestn. Moskov. un-ta. Ser. 15. Vychisl. matematika i kibernetika, 2018, no. 1, 6–16

[21] Orlov S.M., Strelkovskii N.V., “Vychislenie elementov navodyaschego paketa programm dlya osobykh klasterov mnozhestva nachalnykh sostoyanii v zadache paketnogo navedeniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:1 (2019), 150–165 | DOI | MR

[22] Strelkovskii N.V., Orlov S.M., “Algoritm postroeniya garantiruyuschego paketa programm v zadache upravleniya pri nepolnoi informatsii”, Vestn. Moskov. un-ta. Ser. 15. Vychisl. matematika i kibernetika, 2018, no. 2, 20–31 | MR

[23] Surkov P.G., “Zadacha paketnogo navedeniya s nepolnoi informatsiei pri integralnom signale nablyudeniya”, Sib. elektron. mat. izv., 15 (2018), 373–388 | DOI | MR | Zbl

[24] Surkov P.G., “On the problem of package guidance for nonlinear control system via fuzzy approach”, IFAC-PapersOnLine, 51:32 (2018), 733–738 | DOI

[25] Takagi T., Sugeno M., “Fuzzy identification of systems and its applications to modeling and control”, IEEE Transactions on Systems, Man, and Cybernetics, SMC-15:1 (1985), 116–132 | DOI

[26] Maksimov V.I., “Differentsialnaya igra navedeniya pri nepolnoi informatsii o fazovykh koordinatakh i neizvestnom nachalnom sostoyanii”, Differents. uravneniya, 51:12 (2015), 1676–1685 | DOI | Zbl

[27] Maksimov V.I., “Ob odnoi zadache garantirovannogo navedeniya pri nepolnoi informatsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:2 (2016), 199–210 | DOI

[28] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, Izd-vo IMM UrO RAN, Ekaterinburg, 2011, 292 pp.

[29] Maksimov V.I., “Zadacha navedeniya raspredelennoi sistemy: sluchai nepolnoi informatsii o fazovykh koordinatakh i neizvestnom nachalnom sostoyanii”, Differents. uravneniya, 52:11 (2016), 1495–1505 | DOI | Zbl

[30] Rozenberg V.L., “Ob odnoi zadache upravleniya pri defitsite informatsii dlya lineinogo stokhasticheskogo differentsialnogo uravneniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:3 (2015), 292–302

[31] Blizorukova M.S., “Ob odnoi zadache upravleniya lineinoi sistemoi s zapazdyvaniem v upravlenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:2 (2016), 55–62 | DOI | MR

[32] Surkov P.G., “O zadache paketnogo navedeniya s nepolnoi informatsiei dlya lineinoi upravlyaemoi sistemy s zapazdyvaniem”, cb. nauch. tr. fak. VMK MGU im. M. V. Lomonosova, Problemy dinamicheskogo upravleniya, no. 7, ed. pod red. Yu.S. Osipova, Izd. otdel fak-ta VMiK MGU; MAKS Press, M., 2016, 94–108

[33] Surkov P.G., “Zadacha paketnogo navedeniya k zadannomu momentu vremeni dlya lineinoi upravlyaemoi sistemy s zapazdyvaniem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:2 (2016), 267–276 | DOI

[34] Grigorenko N.L., Rumyantsev A.E., “Ob odnom klasse zadach upravleniya pri nepolnoi informatsii”, Tr. MIAN, 291 (2015), 76–85 | DOI | Zbl

[35] Grigorenko N.L., Kondrateva Yu.A., Lukyanova L.N., “Zadacha nakhozhdeniya garantiruyuschego programmnogo upravleniya pri nepolnoi informatsii dlya lineinoi sistemy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:2 (2015), 41–49 | MR

[36] Grigorenko N.L., Rumyantsev A.E., “Terminalnoe upravlenie nelineinym protsessom pri nalichii pomekh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:2 (2016), 113–121 | DOI

[37] Bourdin L., “Cauchy–Lipschitz theory for fractional multi-order dynamics: State-transition matrices, Duhamel formulas and duality theorems”, Differential and Integral Equations, 31:7/8 (2018), 559–594 | DOI | MR | Zbl

[38] Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V., Mittag-Leffler Functions, Related Topics and Applications, Springer-Verlag, Berlin, 2014, 454 pp. | MR | Zbl

[39] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp.

[40] Balachandran K., Kokila J.Y., “On the controllability of fractional dynamical systems”, Int. J. Appl. Math. Comput. Sci., 22:3 (2012), 523–531 | DOI | MR | Zbl

[41] Kulczycki P., Korbicz J., Kacprzyk J., Fractional dynamical systems: methods, algorithms and applications, Springer, Cham, 2022, 397 pp. | DOI | MR | Zbl

[42] Matignon D., d'Andréa-Novel B., “Some results on controllability and observability of finite-dimensional fractional differential systems”, Citeseer, Computational Engineering in Systems Applications, 2, 1996, 952–956

[43] Matychyn I., Onyshchenko V., “Optimal control of linear systems with fractional derivatives”, Fractional Calculus and Applied Analysis, 21:1 (2018), 134–150 | DOI | MR | Zbl

[44] Gorenflo R., Vessella S., Abel Integral Equations: Analisys and Applications, Springer, Berlin, 1991, 222 pp. | DOI | MR

[45] Agarwal O.P., “A new Lagrangian and a new Lagrange equation of motion for fractionally damped systems”, J. Appl. Mech., 68:2 (2001), 339–341 | DOI | MR

[46] Monje C.A., Chen Y., Vinagre B.M., Xue D., Feliu V., Fractional-order systems and controls: Fundamentals and applications, Springer-Verlag, London, 2014, 415 pp. | DOI | MR