Dynamic identification of an unknown input in a hybrid type system
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 164-172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An input identification problem in a hybrid system of differential equations is considered from the viewpoint of the approach of the theory of dynamic inversion. The first equation of the system is a quasi-linear stochastic Ito equation, whereas the second one is a linear ordinary equation containing an unknown disturbance. The identification should be performed from the discrete information on a number of realizations of the stochastic process that solves the first equation. The problem is reduced to an inverse problem for a new system of differential equations, which includes, instead of the stochastic equation, an ordinary equation describing the dynamics of the mathematical expectation of the original process. A finite-step software-oriented solution algorithm based on the method of auxiliary feedback controlled models is designed, and its convergence is proved. An example illustrating the operation of a procedure for calibrating the algorithm parameters is presented.
Keywords: hybrid type system, dynamic input identification, controlled model.
@article{TIMM_2024_30_2_a11,
     author = {V. L. Rozenberg},
     title = {Dynamic identification of an unknown input in a hybrid type system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {164--172},
     year = {2024},
     volume = {30},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a11/}
}
TY  - JOUR
AU  - V. L. Rozenberg
TI  - Dynamic identification of an unknown input in a hybrid type system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 164
EP  - 172
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a11/
LA  - ru
ID  - TIMM_2024_30_2_a11
ER  - 
%0 Journal Article
%A V. L. Rozenberg
%T Dynamic identification of an unknown input in a hybrid type system
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 164-172
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a11/
%G ru
%F TIMM_2024_30_2_a11
V. L. Rozenberg. Dynamic identification of an unknown input in a hybrid type system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 2, pp. 164-172. http://geodesic.mathdoc.fr/item/TIMM_2024_30_2_a11/

[1] Kryazhimskii A.V., Osipov Yu.S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Tekhn. kibernetika, 1983, no. 2, 51–60 | Zbl

[2] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, L., 1995, 625 pp. | MR | Zbl

[3] Maksimov V.I., Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2000, 305 pp.

[4] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2011, 292 pp.

[5] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1984, 456 pp. | MR

[6] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1978, 142 pp.

[7] Blizorukova M.S., Maksimov V.I., “Dinamicheskii metod nevyazki v zadache rekonstruktsii vkhoda sistemy s zapazdyvaniem v upravlenii”, Zhurn. vychisl. matematiki i mat. fiziki, 61:3 (2021), 382–390 | DOI | Zbl

[8] Surkov P.G., “Zadacha dinamicheskogo vosstanovleniya pravoi chasti sistemy differentsialnykh uravnenii netselogo poryadka”, Differents. uravneniya, 55:6 (2019), 865–874 | DOI | Zbl

[9] Rozenberg V.L., “Dynamical input reconstruction problem for a quasi-linear stochastic system”, IFAC PapersOnline, 51:32 (2018), 727–732 | DOI

[10] Kryazhimskii A.V., Osipov Yu.S., “Ob ustoichivom pozitsionnom vosstanovlenii upravleniya po izmereniyam chasti koordinat”, Nekotorye zadachi upravleniya i ustoichivosti, sb. tr., eds. red. A.V. Kim i V.I. Maksimov, Izd-vo UrO AN SSSR, Sverdlovsk, 1989, 33–47

[11] Rozenberg V.L., “K zadache rekonstruktsii pri defitsite informatsii v kvazilineinom stokhasticheskom differentsialnom uravnenii”, Zhurn. vychisl. matematiki i mat. fiziki, 62:11 (2022), 1840–1850 | DOI | Zbl

[12] Oksendal B., Stokhasticheskie differentsialnye uravneniya. Vvedenie v teoriyu i prilozheniya, Mir, M., 2003, 408 pp.

[13] Chernousko F.L., Kolmanovskii V.B., Optimalnoe upravlenie pri sluchainykh vozmuscheniyakh, Nauka, M., 1978, 272 pp.

[14] Maksimov V.I., “On dynamical reconstruction of an input in a linear system under measuring a part of coordinates”, J. Inverse Ill-Posed Problems, 26:3 (2018), 395–410 | DOI | MR | Zbl

[15] Rozenberg V.L., “K zadache dinamicheskogo vosstanovleniya vozmuscheniya pri defitsite informatsii”, Trudy In-ta matematiki i mekhaniki UrO RAN, 25:1 (2019), 207–218 | DOI | MR

[16] Melnikova L.A., Rozenberg V.L., “Algoritm dinamicheskoi rekonstruktsii vkhodov stokhasticheskogo differentsialnogo uravneniya: nastroika parametrov i chislennye eksperimenty”, Vestn. YuUrGU. Ser.: Vychislitelnaya matematika i informatika, 8:4 (2019), 15–29 | DOI