Finite groups whose commuting graph is split
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 280-283 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

As a contribution to the study of graphs defined on groups, we show that for a finite group $G$ the following statements are equivalent{:} the commuting graph of $G$ is a split graph; the commuting graph of $G$ is a threshold graph; either $G$ is abelian, or $G$ is a generalized dihedral group $D(A)=\langle A,t:(\forall a\in A)(at)^2=1\rangle$ where $A$ is an abelian group of odd order.
Keywords: сommuting graph, split graph, threshold graph, generalized dihedral group.
@article{TIMM_2024_30_1_a20,
     author = {Xuanlong Ma and Peter J. Cameron},
     title = {Finite groups whose commuting graph is split},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {280--283},
     year = {2024},
     volume = {30},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a20/}
}
TY  - JOUR
AU  - Xuanlong Ma
AU  - Peter J. Cameron
TI  - Finite groups whose commuting graph is split
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2024
SP  - 280
EP  - 283
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a20/
LA  - en
ID  - TIMM_2024_30_1_a20
ER  - 
%0 Journal Article
%A Xuanlong Ma
%A Peter J. Cameron
%T Finite groups whose commuting graph is split
%J Trudy Instituta matematiki i mehaniki
%D 2024
%P 280-283
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a20/
%G en
%F TIMM_2024_30_1_a20
Xuanlong Ma; Peter J. Cameron. Finite groups whose commuting graph is split. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 30 (2024) no. 1, pp. 280-283. http://geodesic.mathdoc.fr/item/TIMM_2024_30_1_a20/

[1] Bhowal P., Cameron P.J., Nath R.K., and Sambale B., “Solvable conjugacy class graph of groups”, Discrete Math., 346:8 (2023), 113467 | DOI | MR | Zbl

[2] Brauer R. and Fowler K.A., “On groups of even order”, Ann. Math.(2), 62 (1955), 565–583 | DOI | MR | Zbl

[3] Britnell J.R. and Gill N., “Perfect commuting graphs”, J. Group Theory, 20 (2017), 71–102 | DOI | MR | Zbl

[4] Cameron P.J., “Graphs defined on groups”, Internat. J. Group Theory, 11 (2022), 53–107 | DOI | MR | Zbl

[5] Cameron P.J., Manna P., and Mehatari R., “On finite groups whose power graph is a cograph”, J. Algebra, 591 (2022), 59–74 | DOI | MR | Zbl

[6] Chvátal V. and Hammer P.L., “Aggregations of inequalities in integer programming”, Ann. Discrete Math., 1 (1977), 145–162 | DOI | MR | Zbl

[7] Foldes S. and Hammer P.L., “Split graphs”, Proceedings of the $8$th South-Eastern Conference on Combinatorics, Graph Theory and Computing, 1977, 311–315 | MR | Zbl

[8] Landau E., “Über die Klassenzahl der binären quadratischen Formen von negativer Discriminante”, Math. Ann., 56 (1903), 671–676 | DOI | MR