On finite groups isospectral to $PSp_4(q)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 64-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The spectrum of a finite group is the set of its element orders. Let $q$ be a power of a prime $p$, with $p \geqslant 5$. It is known that any finite group having the same spectrum as the simple symplectic group $PSp_4(q)$ either is isomorphic to an almost simple group with socle $PSp_4(q)$ or can be homomorphically mapped onto an almost simple group $H$ with socle $PSL_2(q^2)$. We prove that the group $H$ cannot coincide with $PSL_2(q^2)$, i.e., $H$ must contain outer automorphisms of its socle.
Keywords: finite group, element order.
@article{TIMM_2023_29_4_a5,
     author = {M. A. Grechkoseeva and V. M. Rodionov},
     title = {On finite groups isospectral to $PSp_4(q)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {64--69},
     year = {2023},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a5/}
}
TY  - JOUR
AU  - M. A. Grechkoseeva
AU  - V. M. Rodionov
TI  - On finite groups isospectral to $PSp_4(q)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 64
EP  - 69
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a5/
LA  - ru
ID  - TIMM_2023_29_4_a5
ER  - 
%0 Journal Article
%A M. A. Grechkoseeva
%A V. M. Rodionov
%T On finite groups isospectral to $PSp_4(q)$
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 64-69
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a5/
%G ru
%F TIMM_2023_29_4_a5
M. A. Grechkoseeva; V. M. Rodionov. On finite groups isospectral to $PSp_4(q)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 64-69. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a5/

[1] Mazurov V.D., “Raspoznavanie konechnykh grupp po mnozhestvu poryadkov ikh elementov”, Algebra i logika, 37:6 (1998), 651–666 | MR | Zbl

[2] Grechkoseeva M.A., Mazurov V.D., Shi W. et al., “Finite groups isospectral to simple groups”, Commun. Math. Stat., 11 (2023), 169–194 | DOI | MR | Zbl

[3] Mazurov V.D., Su M.Ch., Chao Ch.P., “Raspoznavanie konechnykh prostykh grupp $L_3(2^m)$ i $U_3(2^m)$ po poryadkam ikh elementov”, Algebra i logika, 39:5 (2000), 567–585 | MR | Zbl

[4] Mazurov V.D., “Raspoznavanie konechnykh prostykh grupp $S_4(q)$ po poryadkam ikh elementov”, Algebra i logika, 41:2 (2002), 166–198 | MR | Zbl

[5] Lytkin Y.V., “On finite groups isospectral to the simple groups $S_4(q)$”, Sib. elektron. mat. izv., 15 (2018), 570–584 | DOI | MR | Zbl

[6] Brauer R., Nesbitt C., “On the modular characters of groups”, Ann. Math., 42:2 (1941), 556–590 | DOI | MR | Zbl

[7] Huppert B., Endliche Gruppen I, Springer-Verl., Berlin, 1967, 793 pp. | DOI | MR | Zbl

[8] Srinivasan B., “The characters of the finite symplectic group $Sp(4,q)$”, Trans. Amer. Math. Soc., 131:2 (1968), 488–525 | MR | Zbl

[9] Suprunenko I.D., The minimal polynomials of unipotent elements in irreducible representations of the classical groups in odd characteristic, Mem. Amer. Math. Soc., 200, no. 939, 2009 | DOI | MR