On the best simultaneous approximation of functions in the Hardy space
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 283-291
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the Hardy spaces $H_{q,\rho}$ ($1\le q\le\infty$, $0\rho\le1$), exact inequalities are found between the best simultaneous approximation of a function and the averaged moduli of smoothness of the angular boundary values of the $r$th derivatives. Some applications of these inequalities to the problem of finding the best upper bounds of the best simultaneous approximations of some classes of functions defined by moduli of smoothness and belonging to the Hardy space $H_{q,\rho}$ are given.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
best simultaneous approximation, Hardy space, upper bound, modulus of smoothness
Mots-clés : majorant.
                    
                  
                
                
                Mots-clés : majorant.
@article{TIMM_2023_29_4_a23,
     author = {M. Sh. Shabozov},
     title = {On the best simultaneous approximation of functions in the {Hardy} space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {283--291},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a23/}
}
                      
                      
                    M. Sh. Shabozov. On the best simultaneous approximation of functions in the Hardy space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 283-291. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a23/
