On the best simultaneous approximation of functions in the Hardy space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 283-291

Voir la notice de l'article provenant de la source Math-Net.Ru

In the Hardy spaces $H_{q,\rho}$ ($1\le q\le\infty$, $0\rho\le1$), exact inequalities are found between the best simultaneous approximation of a function and the averaged moduli of smoothness of the angular boundary values of the $r$th derivatives. Some applications of these inequalities to the problem of finding the best upper bounds of the best simultaneous approximations of some classes of functions defined by moduli of smoothness and belonging to the Hardy space $H_{q,\rho}$ are given.
Keywords: best simultaneous approximation, Hardy space, upper bound, modulus of smoothness
Mots-clés : majorant.
@article{TIMM_2023_29_4_a23,
     author = {M. Sh. Shabozov},
     title = {On the best simultaneous approximation of functions in the {Hardy} space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {283--291},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a23/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
TI  - On the best simultaneous approximation of functions in the Hardy space
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 283
EP  - 291
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a23/
LA  - ru
ID  - TIMM_2023_29_4_a23
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%T On the best simultaneous approximation of functions in the Hardy space
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 283-291
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a23/
%G ru
%F TIMM_2023_29_4_a23
M. Sh. Shabozov. On the best simultaneous approximation of functions in the Hardy space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 283-291. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a23/