Mots-clés : equioscillation
@article{TIMM_2023_29_4_a16,
author = {B. Nagy and Sz. Gy. R\'ev\'esz},
title = {On the weighted trigonometric {Bojanov{\textendash}Chebyshev} extremal problem},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {193--216},
year = {2023},
volume = {29},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a16/}
}
B. Nagy; Sz. Gy. Révész. On the weighted trigonometric Bojanov–Chebyshev extremal problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 193-216. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a16/
[1] Ambrus G., Ball K., and Erdélyi T., “Chebyshev constants for the unit circle”, Bull. Lond. Math. Soc., 45:2 (2013), 236–248 | DOI | MR | Zbl
[2] Berge C., Topological spaces, Translated from the French original by E. M. Patterson. Reprint of the 1963 translation, Dover Publications, Inc., Mineola, NY, 1997, 270 pp. | MR
[3] Bojanov B.D., “A generalization of Chebyshev polynomials”, J. Approx. Theory, 26:4 (1979), 293–300 | DOI | MR | Zbl
[4] Borwein P. and Erdélyi T., Polynomials and polynomial inequalities, Ser. Grad. Texts in Math., 161, Springer-Verlag, NY, 1995, 480 pp. | DOI | MR
[5] Farkas B. and Nagy B., “Transfinite diameter, Chebyshev constant and energy on locally compact spaces”, Potential Anal., 28:3 (2008), 241–260 | DOI | MR | Zbl
[6] Farkas B., Nagy B., and Révész Sz. Gy., “A minimax problem for sums of translates on the torus”, Trans. London Math. Soc., 5:1 (2018), 1–46 | DOI | MR | Zbl
[7] Farkas B., Nagy B., and Révész Sz. Gy., “On intertwining of maxima of sum of translates functions with nonsingular kernels”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 28:4 (2022), 262–272 | DOI | MR
[8] Farkas B., Nagy B., and Révész Sz. Gy., “On the weighted Bojanov–Chebyshev problem and the sum of translates method of Fenton”, Sbornik Math., 214:8 (2023), 119–150 ((in Russian)) | DOI
[9] Farkas B., Nagy B., and Révész Sz. Gy., “A homeomorphism theorem for sums of translates”, Rev. Mat. Complut., 49 pp. | DOI
[10] Farkas B., Nagy B., and Révész Sz. Gy., “Fenton type minimax problems for sum of translates functions”, [e-resource], 27 pp., arXiv: https://arxiv.org/pdf/2210.04348.pdf | DOI
[11] Fenton P.C., “A min-max theorem for sums of translates of a function”, J. Math. Anal. Appl., 244:1 (2000), 214–222 | DOI | MR | Zbl
[12] Fenton P.C., “{$\cos\pi\lambda$} again”, Proc. Amer. Math. Soc., 131:6 (2003), 1875–1880 | DOI | MR | Zbl
[13] Hardin D.P., Kendall A.P., and Saff E.B., “Polarization optimality of equally spaced points on the circle for discrete potentials”, Discrete Comput. Geom., 50:1 (2013), 236–243 | DOI | MR | Zbl
[14] Rankin R.A., “On the closest packing of spheres in $n$ dimensions”, Ann. of Math., 48:4 (1947), 1062–1081 | DOI | MR | Zbl
[15] Saff E.B. and Totik V., Logarithmic potentials with external fields, Appendix B by Thomas Bloom, Springer-Verlag, Berlin, 1997, 505 pp. | DOI | MR | Zbl