On the weighted trigonometric Bojanov--Chebyshev extremal problem
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 193-216
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We investigate the weighted Bojanov–Chebyshev extremal problem for trigonometric polynomials, that is,
the minimax problem of minimizing $\|T\|_{w,C(\mathbb{T})}$,
where $w$ is a sufficiently nonvanishing, upper bounded, nonnegative weight function,
the norm is the corresponding weighted maximum norm on the torus $\mathbb{T}$, and $T$ is a trigonometric polynomial
with prescribed multiplicities $\nu_1,\ldots,\nu_n$ of root factors $|\sin(\pi(t-z_j))|^{\nu_j}$.
If the $\nu_j$ are natural numbers and their sum is even,
then $T$ is indeed a trigonometric polynomial
and
the case when all the $\nu_j$ are 1 covers the Chebyshev extremal problem.
Our result will be
more general, allowing, in particular,
so-called generalized trigonometric polynomials.
To reach our goal, we invoke Fenton's
sum of translates method.
However, altering from the earlier described cases without weight or on the interval,
here we find different situations, and can state less about the solutions.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
minimax and maximin problems, kernel function,
sum of translates function, majorization.
Mots-clés : vector of local maxima, equioscillation
                    
                  
                
                
                Mots-clés : vector of local maxima, equioscillation
@article{TIMM_2023_29_4_a16,
     author = {B. Nagy and Sz. Gy. R\'ev\'esz},
     title = {On the weighted trigonometric {Bojanov--Chebyshev} extremal problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {193--216},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a16/}
}
                      
                      
                    TY - JOUR AU - B. Nagy AU - Sz. Gy. Révész TI - On the weighted trigonometric Bojanov--Chebyshev extremal problem JO - Trudy Instituta matematiki i mehaniki PY - 2023 SP - 193 EP - 216 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a16/ LA - en ID - TIMM_2023_29_4_a16 ER -
B. Nagy; Sz. Gy. Révész. On the weighted trigonometric Bojanov--Chebyshev extremal problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 193-216. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a16/
