On the weighted trigonometric Bojanov--Chebyshev extremal problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 193-216

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the weighted Bojanov–Chebyshev extremal problem for trigonometric polynomials, that is, the minimax problem of minimizing $\|T\|_{w,C(\mathbb{T})}$, where $w$ is a sufficiently nonvanishing, upper bounded, nonnegative weight function, the norm is the corresponding weighted maximum norm on the torus $\mathbb{T}$, and $T$ is a trigonometric polynomial with prescribed multiplicities $\nu_1,\ldots,\nu_n$ of root factors $|\sin(\pi(t-z_j))|^{\nu_j}$. If the $\nu_j$ are natural numbers and their sum is even, then $T$ is indeed a trigonometric polynomial and the case when all the $\nu_j$ are 1 covers the Chebyshev extremal problem. Our result will be more general, allowing, in particular, so-called generalized trigonometric polynomials. To reach our goal, we invoke Fenton's sum of translates method. However, altering from the earlier described cases without weight or on the interval, here we find different situations, and can state less about the solutions.
Keywords: minimax and maximin problems, kernel function, sum of translates function, majorization.
Mots-clés : vector of local maxima, equioscillation
@article{TIMM_2023_29_4_a16,
     author = {B. Nagy and Sz. Gy. R\'ev\'esz},
     title = {On the weighted trigonometric {Bojanov--Chebyshev} extremal problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {193--216},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a16/}
}
TY  - JOUR
AU  - B. Nagy
AU  - Sz. Gy. Révész
TI  - On the weighted trigonometric Bojanov--Chebyshev extremal problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 193
EP  - 216
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a16/
LA  - en
ID  - TIMM_2023_29_4_a16
ER  - 
%0 Journal Article
%A B. Nagy
%A Sz. Gy. Révész
%T On the weighted trigonometric Bojanov--Chebyshev extremal problem
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 193-216
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a16/
%G en
%F TIMM_2023_29_4_a16
B. Nagy; Sz. Gy. Révész. On the weighted trigonometric Bojanov--Chebyshev extremal problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 193-216. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a16/