On the weighted trigonometric Bojanov–Chebyshev extremal problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 193-216 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We investigate the weighted Bojanov–Chebyshev extremal problem for trigonometric polynomials, that is, the minimax problem of minimizing $\|T\|_{w,C(\mathbb{T})}$, where $w$ is a sufficiently nonvanishing, upper bounded, nonnegative weight function, the norm is the corresponding weighted maximum norm on the torus $\mathbb{T}$, and $T$ is a trigonometric polynomial with prescribed multiplicities $\nu_1,\ldots,\nu_n$ of root factors $|\sin(\pi(t-z_j))|^{\nu_j}$. If the $\nu_j$ are natural numbers and their sum is even, then $T$ is indeed a trigonometric polynomial and the case when all the $\nu_j$ are 1 covers the Chebyshev extremal problem. Our result will be more general, allowing, in particular, so-called generalized trigonometric polynomials. To reach our goal, we invoke Fenton's sum of translates method. However, altering from the earlier described cases without weight or on the interval, here we find different situations, and can state less about the solutions.
Keywords: minimax and maximin problems, kernel function, sum of translates function, vector of local maxima, majorization.
Mots-clés : equioscillation
@article{TIMM_2023_29_4_a16,
     author = {B. Nagy and Sz. Gy. R\'ev\'esz},
     title = {On the weighted trigonometric {Bojanov{\textendash}Chebyshev} extremal problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {193--216},
     year = {2023},
     volume = {29},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a16/}
}
TY  - JOUR
AU  - B. Nagy
AU  - Sz. Gy. Révész
TI  - On the weighted trigonometric Bojanov–Chebyshev extremal problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 193
EP  - 216
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a16/
LA  - en
ID  - TIMM_2023_29_4_a16
ER  - 
%0 Journal Article
%A B. Nagy
%A Sz. Gy. Révész
%T On the weighted trigonometric Bojanov–Chebyshev extremal problem
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 193-216
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a16/
%G en
%F TIMM_2023_29_4_a16
B. Nagy; Sz. Gy. Révész. On the weighted trigonometric Bojanov–Chebyshev extremal problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 193-216. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a16/

[1] Ambrus G., Ball K., and Erdélyi T., “Chebyshev constants for the unit circle”, Bull. Lond. Math. Soc., 45:2 (2013), 236–248 | DOI | MR | Zbl

[2] Berge C., Topological spaces, Translated from the French original by E. M. Patterson. Reprint of the 1963 translation, Dover Publications, Inc., Mineola, NY, 1997, 270 pp. | MR

[3] Bojanov B.D., “A generalization of Chebyshev polynomials”, J. Approx. Theory, 26:4 (1979), 293–300 | DOI | MR | Zbl

[4] Borwein P. and Erdélyi T., Polynomials and polynomial inequalities, Ser. Grad. Texts in Math., 161, Springer-Verlag, NY, 1995, 480 pp. | DOI | MR

[5] Farkas B. and Nagy B., “Transfinite diameter, Chebyshev constant and energy on locally compact spaces”, Potential Anal., 28:3 (2008), 241–260 | DOI | MR | Zbl

[6] Farkas B., Nagy B., and Révész Sz. Gy., “A minimax problem for sums of translates on the torus”, Trans. London Math. Soc., 5:1 (2018), 1–46 | DOI | MR | Zbl

[7] Farkas B., Nagy B., and Révész Sz. Gy., “On intertwining of maxima of sum of translates functions with nonsingular kernels”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 28:4 (2022), 262–272 | DOI | MR

[8] Farkas B., Nagy B., and Révész Sz. Gy., “On the weighted Bojanov–Chebyshev problem and the sum of translates method of Fenton”, Sbornik Math., 214:8 (2023), 119–150 ((in Russian)) | DOI

[9] Farkas B., Nagy B., and Révész Sz. Gy., “A homeomorphism theorem for sums of translates”, Rev. Mat. Complut., 49 pp. | DOI

[10] Farkas B., Nagy B., and Révész Sz. Gy., “Fenton type minimax problems for sum of translates functions”, [e-resource], 27 pp., arXiv: https://arxiv.org/pdf/2210.04348.pdf | DOI

[11] Fenton P.C., “A min-max theorem for sums of translates of a function”, J. Math. Anal. Appl., 244:1 (2000), 214–222 | DOI | MR | Zbl

[12] Fenton P.C., “{$\cos\pi\lambda$} again”, Proc. Amer. Math. Soc., 131:6 (2003), 1875–1880 | DOI | MR | Zbl

[13] Hardin D.P., Kendall A.P., and Saff E.B., “Polarization optimality of equally spaced points on the circle for discrete potentials”, Discrete Comput. Geom., 50:1 (2013), 236–243 | DOI | MR | Zbl

[14] Rankin R.A., “On the closest packing of spheres in $n$ dimensions”, Ann. of Math., 48:4 (1947), 1062–1081 | DOI | MR | Zbl

[15] Saff E.B. and Totik V., Logarithmic potentials with external fields, Appendix B by Thomas Bloom, Springer-Verlag, Berlin, 1997, 505 pp. | DOI | MR | Zbl