On Constants in the Bernstein–Szegő Inequality for the Weyl Derivative of Order Less Than Unity of Trigonometric Polynomials and Entire Functions of Exponential Type in the Uniform Norm
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 130-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Weyl derivative (fractional derivative) $f_n^{(\alpha)}$ of real nonnegative order $\alpha$ is considered on the set $\mathscr{T}_n$ of trigonometric polynomials $f_n$ of order $n$ with complex coefficients. The constant in the Bernstein–Szegő inequality $\|f_n^{(\alpha)}\cos\theta+\tilde{f}_n^{(\alpha)}\sin\theta\|\le B_n(\alpha,\theta)\|f_n\|$ in the uniform norm is studied. This inequality has been well studied for $\alpha\ge 1$: G. T. Sokolov proved in 1935 that it holds with the constant $n^\alpha$ for all $\theta\in\mathbb{R}$. For $0\alpha1$, there is much less information about $B_n(\alpha,\theta)$. In this paper, for $0\alpha1$ and $\theta\in\mathbb{R}$, we establish the limit relation $\lim_{n\to\infty}B_n(\alpha,\theta)/n^\alpha=\mathcal{B}(\alpha,\theta)$, where $\mathcal{B}(\alpha,\theta)$ is the sharp constant in the similar inequality for entire functions of exponential type at most $1$ that are bounded on the real line. The value $\theta=-\pi\alpha/2$ corresponds to the Riesz derivative, which is an important particular case of the Weyl–Szegő operator. In this case, we derive exact asymptotics for the quantity $B_n(\alpha)=B_n(\alpha,-\pi\alpha/2)$ as $n\to\infty$
Keywords: trigonometric polynomials, entire functions of exponential type, Weyl–Szegő operator, Riesz derivative, Bernstein inequality, uniform norm.
@article{TIMM_2023_29_4_a10,
     author = {A. O. Leont'eva},
     title = {On {Constants} in the {Bernstein{\textendash}Szeg\H{o}} {Inequality} for the {Weyl} {Derivative} of {Order} {Less} {Than} {Unity} of {Trigonometric} {Polynomials} and {Entire} {Functions} of {Exponential} {Type} in the {Uniform} {Norm}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {130--139},
     year = {2023},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a10/}
}
TY  - JOUR
AU  - A. O. Leont'eva
TI  - On Constants in the Bernstein–Szegő Inequality for the Weyl Derivative of Order Less Than Unity of Trigonometric Polynomials and Entire Functions of Exponential Type in the Uniform Norm
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 130
EP  - 139
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a10/
LA  - ru
ID  - TIMM_2023_29_4_a10
ER  - 
%0 Journal Article
%A A. O. Leont'eva
%T On Constants in the Bernstein–Szegő Inequality for the Weyl Derivative of Order Less Than Unity of Trigonometric Polynomials and Entire Functions of Exponential Type in the Uniform Norm
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 130-139
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a10/
%G ru
%F TIMM_2023_29_4_a10
A. O. Leont'eva. On Constants in the Bernstein–Szegő Inequality for the Weyl Derivative of Order Less Than Unity of Trigonometric Polynomials and Entire Functions of Exponential Type in the Uniform Norm. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 130-139. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a10/

[1] Weyl H., “Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung”, Vierteljahrcsschrift der Naturforschenden Gesellschaft in Zurich, 62:1-2 (1917), 296–302 | MR

[2] Samko S.G., Kilbas A.A., Marichev O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 638 pp.

[3] Leonteva A.O., “Neravenstvo Bernshteina — Segë dlya proizvodnykh Veilya trigonometricheskikh polinomov v prostranstve $L_0$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:4 (2018), 199–207 | DOI

[4] Bernshtein S.N., “Ob odnom svoistve tselykh funktsii”, Sobranie sochinenii, v. 1, Konstruktivnaya teoriya funktsii, Izd-vo AN SSSR, M., 1952, 582 pp. | Zbl

[5] Akhiezer N.I., Lektsii po teorii approksimatsii, Nauka, M., 1965, 408 pp.

[6] Arestov V.V., “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. matematicheskaya, 45:1 (1981), 3–22

[7] Arestov V.V., Glazyrina P.Yu., “Neravenstvo Bernshteina — Segë dlya drobnykh proizvodnykh trigonometricheskikh polinomov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 17–31 | MR

[8] Gorbachev D.V., “Tochnye neravenstva Bernshteina — Nikolskogo dlya polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshevskii sb., 22:5 (2021), 58–110 | DOI | MR | Zbl

[9] Sokolov G.T., “O nekotorykh ekstremalnykh svoistvakh trigonometricheskikh summ”, Izv. AN SSSR. VII seriya. Otdelenie matematicheskikh i estestvennykh nauk, 1935, no. 6-7, 857–884 | Zbl

[10] Kozko A.I., “The exact constants in the Bernstein–Zygmund–Szegő inequalities with fractional derivatives and the Jackson–Nikol'skii inequality for trigonometric polynomials”, East J. Approx., 4:3 (1998), 391–416 | MR | Zbl

[11] Lizorkin P.I., “Otsenki trigonometricheskikh integralov i neravenstvo Bernshteina dlya drobnykh proizvodnykh”, Izv. AN SSSR. Ser. matematicheskaya, 4:3 (1965), 109–126

[12] Vinogradov O.L., “Tochnye otsenki pogreshnostei formul tipa chislennogo differentsirovaniya na klassakh tselykh funktsii konechnoi stepeni”, Sib. mat. zhurn., 48:3 (2007), 538–555 | MR | Zbl

[13] Civin P., “Inequalities for trigonometric integrals”, Duke Math. J., 8 (1941), 656–665 | DOI | MR | Zbl

[14] Leonteva A.O., “Neravenstvo Bernshteina dlya proizvodnoi Rissa drobnogo poryadka, menshego edinitsy, tselykh funktsii eksponentsialnogo tipa”, Dokl. RAN. Ser. Matematika, informatika, protsessy upravleniya, 2023

[15] Stechkin S.B., “K probleme mnozhitelei dlya trigonometricheskikh polinomov”, Dokl. AN SSSR, 75:2 (1950), 165–168 | Zbl

[16] Wilmes G., “On Riesz-type inequalities and K-functionals related to Riesz potentials in $\mathbb{R}^N$”, N. Numer. Funct. Anal. Optim., 1:1 (1979), 57–77 | DOI | MR | Zbl

[17] Bang. T., “Une inégalite de Kolmogoroff et les fonctions presque-périodiques”, Danske Vid. Selsk. Math.-Fys. Medd., 19:4 (1941), 28 | MR | Zbl

[18] Geisberg S.P., “Analogi neravenstv S. N. Bernshteina dlya drobnoi proizvodnoi”, Voprosy prikladnoi matematiki i matematicheskogo modelirovaniya, Kratkie soderzhaniya dokl. 25-i nauch. konf. (24 yanv. – 4 fevr. 1967 g.), Leningr. inzh.-stroit. in-t, L., 1967, 5–10

[19] Ganzburg M.I., “Sharp Constants of Approximation Theory. IV. Asymptotic Relations in General Settings”, Anal. Math., 49:1 (2023), 79–136 | DOI | MR

[20] Gorbachev D.V., Martyanov I.A., “Granitsy polinomialnykh konstant Nikolskogo v $L^p$ s vesom Gegenbauera”, Tr. In-ta matematiki i mekhaniki UrO RAN, 26:4 (2020), 126–137 | DOI

[21] Arestov V.V., Deikalova M.V., “On one inequality of different metrics for trigonometric polynomials”, Ural Math. J., 8:2 (2022), 27–45 | DOI | MR | Zbl

[22] Ganzburg M.I., Tikhonov S.Yu., “On Sharp Constants in Bernstein-Nikolskii Inequalities”, Constr. Approx., 45 (2017), 449–466 | DOI | MR | Zbl

[23] Levitan B.M., “Ob odnom obobschenii neravenstv S. N. Bernshteina i H. Bohr'a”, Dokl. AN SSSR, 15 (1937), 17–19

[24] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Fizmatlit, M., 2003, 863 pp.