On Constants in the Bernstein--Szeg\H{o} Inequality for the Weyl Derivative of Order Less Than Unity of Trigonometric Polynomials and Entire Functions of Exponential Type in the Uniform Norm
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 130-139
Voir la notice de l'article provenant de la source Math-Net.Ru
The Weyl derivative (fractional derivative) $f_n^{(\alpha)}$ of real nonnegative order $\alpha$ is considered on the set $\mathscr{T}_n$ of trigonometric polynomials $f_n$ of order $n$ with complex coefficients. The constant in the Bernstein–Szegő inequality $\|f_n^{(\alpha)}\cos\theta+\tilde{f}_n^{(\alpha)}\sin\theta\|\le B_n(\alpha,\theta)\|f_n\|$ in the uniform norm is studied. This inequality has been well studied for $\alpha\ge 1$: G. T. Sokolov proved in 1935 that it holds with the constant $n^\alpha$ for all $\theta\in\mathbb{R}$. For $0\alpha1$, there is much less information about $B_n(\alpha,\theta)$. In this paper, for $0\alpha1$ and $\theta\in\mathbb{R}$, we establish the limit relation $\lim_{n\to\infty}B_n(\alpha,\theta)/n^\alpha=\mathcal{B}(\alpha,\theta)$, where $\mathcal{B}(\alpha,\theta)$ is the sharp constant in the similar inequality for entire functions of exponential type at most $1$ that are bounded on the real line. The value $\theta=-\pi\alpha/2$ corresponds to the Riesz derivative, which is an important particular case of the Weyl–Szegő operator. In this case, we derive exact asymptotics for the quantity $B_n(\alpha)=B_n(\alpha,-\pi\alpha/2)$ as $n\to\infty$
Keywords:
trigonometric polynomials, entire functions of exponential type, Weyl–Szegő operator, Riesz derivative, Bernstein inequality, uniform norm.
@article{TIMM_2023_29_4_a10,
author = {A. O. Leont'eva},
title = {On {Constants} in the {Bernstein--Szeg\H{o}} {Inequality} for the {Weyl} {Derivative} of {Order} {Less} {Than} {Unity} of {Trigonometric} {Polynomials} and {Entire} {Functions} of {Exponential} {Type} in the {Uniform} {Norm}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {130--139},
publisher = {mathdoc},
volume = {29},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a10/}
}
TY - JOUR
AU - A. O. Leont'eva
TI - On Constants in the Bernstein--Szeg\H{o} Inequality for the Weyl Derivative of Order Less Than Unity of Trigonometric Polynomials and Entire Functions of Exponential Type in the Uniform Norm
JO - Trudy Instituta matematiki i mehaniki
PY - 2023
SP - 130
EP - 139
VL - 29
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a10/
LA - ru
ID - TIMM_2023_29_4_a10
ER -
%0 Journal Article
%A A. O. Leont'eva
%T On Constants in the Bernstein--Szeg\H{o} Inequality for the Weyl Derivative of Order Less Than Unity of Trigonometric Polynomials and Entire Functions of Exponential Type in the Uniform Norm
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 130-139
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a10/
%G ru
%F TIMM_2023_29_4_a10
A. O. Leont'eva. On Constants in the Bernstein--Szeg\H{o} Inequality for the Weyl Derivative of Order Less Than Unity of Trigonometric Polynomials and Entire Functions of Exponential Type in the Uniform Norm. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 130-139. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a10/