@article{TIMM_2023_29_4_a10,
author = {A. O. Leont'eva},
title = {On {Constants} in the {Bernstein{\textendash}Szeg\H{o}} {Inequality} for the {Weyl} {Derivative} of {Order} {Less} {Than} {Unity} of {Trigonometric} {Polynomials} and {Entire} {Functions} of {Exponential} {Type} in the {Uniform} {Norm}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {130--139},
year = {2023},
volume = {29},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a10/}
}
TY - JOUR AU - A. O. Leont'eva TI - On Constants in the Bernstein–Szegő Inequality for the Weyl Derivative of Order Less Than Unity of Trigonometric Polynomials and Entire Functions of Exponential Type in the Uniform Norm JO - Trudy Instituta matematiki i mehaniki PY - 2023 SP - 130 EP - 139 VL - 29 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a10/ LA - ru ID - TIMM_2023_29_4_a10 ER -
%0 Journal Article %A A. O. Leont'eva %T On Constants in the Bernstein–Szegő Inequality for the Weyl Derivative of Order Less Than Unity of Trigonometric Polynomials and Entire Functions of Exponential Type in the Uniform Norm %J Trudy Instituta matematiki i mehaniki %D 2023 %P 130-139 %V 29 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a10/ %G ru %F TIMM_2023_29_4_a10
A. O. Leont'eva. On Constants in the Bernstein–Szegő Inequality for the Weyl Derivative of Order Less Than Unity of Trigonometric Polynomials and Entire Functions of Exponential Type in the Uniform Norm. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 4, pp. 130-139. http://geodesic.mathdoc.fr/item/TIMM_2023_29_4_a10/
[1] Weyl H., “Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung”, Vierteljahrcsschrift der Naturforschenden Gesellschaft in Zurich, 62:1-2 (1917), 296–302 | MR
[2] Samko S.G., Kilbas A.A., Marichev O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 638 pp.
[3] Leonteva A.O., “Neravenstvo Bernshteina — Segë dlya proizvodnykh Veilya trigonometricheskikh polinomov v prostranstve $L_0$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:4 (2018), 199–207 | DOI
[4] Bernshtein S.N., “Ob odnom svoistve tselykh funktsii”, Sobranie sochinenii, v. 1, Konstruktivnaya teoriya funktsii, Izd-vo AN SSSR, M., 1952, 582 pp. | Zbl
[5] Akhiezer N.I., Lektsii po teorii approksimatsii, Nauka, M., 1965, 408 pp.
[6] Arestov V.V., “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. matematicheskaya, 45:1 (1981), 3–22
[7] Arestov V.V., Glazyrina P.Yu., “Neravenstvo Bernshteina — Segë dlya drobnykh proizvodnykh trigonometricheskikh polinomov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 17–31 | MR
[8] Gorbachev D.V., “Tochnye neravenstva Bernshteina — Nikolskogo dlya polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshevskii sb., 22:5 (2021), 58–110 | DOI | MR | Zbl
[9] Sokolov G.T., “O nekotorykh ekstremalnykh svoistvakh trigonometricheskikh summ”, Izv. AN SSSR. VII seriya. Otdelenie matematicheskikh i estestvennykh nauk, 1935, no. 6-7, 857–884 | Zbl
[10] Kozko A.I., “The exact constants in the Bernstein–Zygmund–Szegő inequalities with fractional derivatives and the Jackson–Nikol'skii inequality for trigonometric polynomials”, East J. Approx., 4:3 (1998), 391–416 | MR | Zbl
[11] Lizorkin P.I., “Otsenki trigonometricheskikh integralov i neravenstvo Bernshteina dlya drobnykh proizvodnykh”, Izv. AN SSSR. Ser. matematicheskaya, 4:3 (1965), 109–126
[12] Vinogradov O.L., “Tochnye otsenki pogreshnostei formul tipa chislennogo differentsirovaniya na klassakh tselykh funktsii konechnoi stepeni”, Sib. mat. zhurn., 48:3 (2007), 538–555 | MR | Zbl
[13] Civin P., “Inequalities for trigonometric integrals”, Duke Math. J., 8 (1941), 656–665 | DOI | MR | Zbl
[14] Leonteva A.O., “Neravenstvo Bernshteina dlya proizvodnoi Rissa drobnogo poryadka, menshego edinitsy, tselykh funktsii eksponentsialnogo tipa”, Dokl. RAN. Ser. Matematika, informatika, protsessy upravleniya, 2023
[15] Stechkin S.B., “K probleme mnozhitelei dlya trigonometricheskikh polinomov”, Dokl. AN SSSR, 75:2 (1950), 165–168 | Zbl
[16] Wilmes G., “On Riesz-type inequalities and K-functionals related to Riesz potentials in $\mathbb{R}^N$”, N. Numer. Funct. Anal. Optim., 1:1 (1979), 57–77 | DOI | MR | Zbl
[17] Bang. T., “Une inégalite de Kolmogoroff et les fonctions presque-périodiques”, Danske Vid. Selsk. Math.-Fys. Medd., 19:4 (1941), 28 | MR | Zbl
[18] Geisberg S.P., “Analogi neravenstv S. N. Bernshteina dlya drobnoi proizvodnoi”, Voprosy prikladnoi matematiki i matematicheskogo modelirovaniya, Kratkie soderzhaniya dokl. 25-i nauch. konf. (24 yanv. – 4 fevr. 1967 g.), Leningr. inzh.-stroit. in-t, L., 1967, 5–10
[19] Ganzburg M.I., “Sharp Constants of Approximation Theory. IV. Asymptotic Relations in General Settings”, Anal. Math., 49:1 (2023), 79–136 | DOI | MR
[20] Gorbachev D.V., Martyanov I.A., “Granitsy polinomialnykh konstant Nikolskogo v $L^p$ s vesom Gegenbauera”, Tr. In-ta matematiki i mekhaniki UrO RAN, 26:4 (2020), 126–137 | DOI
[21] Arestov V.V., Deikalova M.V., “On one inequality of different metrics for trigonometric polynomials”, Ural Math. J., 8:2 (2022), 27–45 | DOI | MR | Zbl
[22] Ganzburg M.I., Tikhonov S.Yu., “On Sharp Constants in Bernstein-Nikolskii Inequalities”, Constr. Approx., 45 (2017), 449–466 | DOI | MR | Zbl
[23] Levitan B.M., “Ob odnom obobschenii neravenstv S. N. Bernshteina i H. Bohr'a”, Dokl. AN SSSR, 15 (1937), 17–19
[24] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Fizmatlit, M., 2003, 863 pp.