@article{TIMM_2023_29_3_a15,
author = {M. Yu. Khachay and E. D. Neznakhina and K. V. Ryzhenko},
title = {Polynomial-Time {Approximability} of the {Asymmetric} {Problem} of {Covering} a {Graph} by a {Bounded} {Number} of {Cycles}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {261--273},
year = {2023},
volume = {29},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a15/}
}
TY - JOUR AU - M. Yu. Khachay AU - E. D. Neznakhina AU - K. V. Ryzhenko TI - Polynomial-Time Approximability of the Asymmetric Problem of Covering a Graph by a Bounded Number of Cycles JO - Trudy Instituta matematiki i mehaniki PY - 2023 SP - 261 EP - 273 VL - 29 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a15/ LA - ru ID - TIMM_2023_29_3_a15 ER -
%0 Journal Article %A M. Yu. Khachay %A E. D. Neznakhina %A K. V. Ryzhenko %T Polynomial-Time Approximability of the Asymmetric Problem of Covering a Graph by a Bounded Number of Cycles %J Trudy Instituta matematiki i mehaniki %D 2023 %P 261-273 %V 29 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a15/ %G ru %F TIMM_2023_29_3_a15
M. Yu. Khachay; E. D. Neznakhina; K. V. Ryzhenko. Polynomial-Time Approximability of the Asymmetric Problem of Covering a Graph by a Bounded Number of Cycles. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 3, pp. 261-273. http://geodesic.mathdoc.fr/item/TIMM_2023_29_3_a15/
[1] Gimadi E.Kh., Khachai M.Yu., Ekstremalnye zadachi na mnozhestvakh perestanovok, UMTs UPI, Ekaterinburg, 2016, 220 pp.
[2] Sahni S., Gonzales T., “$P$-complete approximation problems”, Journal of the ACM, 23 (1976), 555–565 | DOI | MR | Zbl
[3] Bläser Markus, Siebert Bodo, “Computing cycle covers without short cycles”, Algorithms — ESA 2001, Lecture Notes in Computer Science, 2161, ed. F. Meyer auf der Heide, Springer-Verlag, Berlin; Heidelberg, 2001, 368–379 | DOI | MR
[4] Bläser Markus, Shankar Ram L., Sviridenko Maxim, “Improved approximation algorithms for metric maximum ATSP and maximum 3-cycle cover problems”, Operations Research Letters, 37:3 (2009), 176–180 | DOI | MR
[5] Manthey Bodo, “On approximating restricted cycle covers”, SIAM Journal on Computing, 38:1 (2008), 181–206 | DOI | MR | Zbl
[6] Manthey Bodo, “Minimum-weight cycle covers and their approximability”, Discrete Appl. Math., 157:7 (2009), 1470–1480 | DOI | MR | Zbl
[7] Khachai M.Yu., Neznakhina E.D., “Approximability of the problem about a minimum-weight cycle cover of a graph”, Dokl. Math., 91 (2015), 240–245 | DOI | MR | Zbl
[8] Khachay M., Neznakhina K., “Approximability of the Minimum-Weight $k$-Size Cycle Cover Problem”, J. Global Optim., 66:1 (2016), 65–82 | DOI | MR | Zbl
[9] E. D. Neznakhina, “PTAS dlya zadachi Min-$k$-SCCP v evklidovom prostranstve proizvolnoi fiksirovannoi razmernosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:3 (2015), 268–278
[10] E. Kh. Gimadi, I. A. Rykov, “Asimptoticheski tochnyi podkhod k priblizhennomu resheniyu nekotorykh zadach pokrytiya grafa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:3 (2015), 89–99
[11] Gimadi E.Kh., Rykov I.A., “On the asymptotic optimality of a solution of the euclidean problem of covering a graph by m nonadjacent cycles of maximum total weight”, Dokl. Math., 93 (2016), 117–120 | DOI | MR | Zbl
[12] Christofides N., “Worst-case analysis of a new heuristic for the Traveling Salesman Problem”, Proceedings of a Symposium on New Directions and Recent Results in Algorithms and Complexity, ed. J. F. Traub, Acad. Press, NY; San Francisco; London, 1976, 441
[13] Serdyukov A.I., “O nekotorykh ekstremalnykh obkhodakh v grafakh”, Upravlyaemye sistemy, 1978, no. 17, 76–79 | Zbl
[14] Wolsey Laurence A., “Heuristic analysis, linear programming and branch and bound”, Combinatorial Optimization II, ed. V.J. Rayward-Smith, Springer, Berlin, Heidelberg, 1980, 121–134 | DOI | MR
[15] Asadpour Arash, Goemans Michel X., Madry Aleksander, Gharan Shayan Oveis, Saberi Amin, “An $O(\log n/\log\log n)$-approximation algorithm for the asymmetric traveling salesman problem”, Operations Research, 65:4 (2017), 1043–1061 | DOI | MR | Zbl
[16] Svensson Ola, Tarnawski Jakub, and Végh László A., “A constant-factor approximation algorithm for the asymmetric traveling salesman problem”, J. ACM, 67:6 (2020) | DOI | MR | Zbl
[17] Traub Vera and Vygen Jens, “An improved approximation algorithm for the asymmetric traveling salesman problem”, SIAM J. Comp., 51:1 (2022), 139–173 | DOI | MR
[18] M. Yu. Khachai, E. D. Neznakhina, K. V. Ryzhenko., “Priblizhennye algoritmy s postoyannoi tochnostyu dlya serii marshrutnykh kombinatornykh zadach, osnovannye na svedenii k asimmetrichnoi zadache kommivoyazhera”, Tr. In-ta matematiki i mekhaniki UrO RAN, 29:3 (2022), 241–258 | DOI
[19] Rizhenko Ksenia, Neznakhina Katherine, Khachay Michael, “Fixed ratio polynomial time approximation algorithm for the prize-collecting asymmetric traveling salesman problem”, Ural Math. J., 9:1 (2023), 135–146 | DOI | MR
[20] Grötschel M., Lovász L., Schrijver A., “The ellipsoid method and its consequences in combinatorial optimization”, Combinatorica, 1:2 (1981), 169–197 | DOI | MR | Zbl
[21] Karzanov Alexander V., “How to tidy up a symmetric set-system by use of uncrossing operations”, Theoretical Computer Science, 157:2 (1996), 215–225 | DOI | MR | Zbl
[22] Frieze A.M., Galbiati G., Maffioli F., “On the worst-case performance of some algorithms for the asymmetric traveling salesman problem”, Networks, 12:1 (1982), 23–39 | DOI | MR | Zbl
[23] Schrijver A., Combinatorial optimization — polyhedra and efficiency, Springer, NY, 2003, 1189 pp. | MR | Zbl