Some Properties of Ultrafilters Related to Their Use As Generalized Elements
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 271-286
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Ultrafilters of broadly understood measurable spaces and their application as generalized elements in abstract reachability problems with constraints of asymptotic nature are considered. Constructions for the immersion of conventional solutions, which are points of a fixed set, into the space of ultrafilters and representations of “limit” ultrafilters realized with topologies of Wallman and Stone types are studied. The structure of the attraction set is established using constraints of asymptotic nature in the form of a nonempty family of sets in the space of ordinary solutions. The questions of implementation up to any preselected neighborhood of the attraction sets in the topologies of Wallman and Stone types are studied. Some analogs of the mentioned properties are considered for the space of maximal linked systems.
Keywords: attraction set, constraints of asymptotic nature, ultrafilter.
@article{TIMM_2023_29_2_a19,
     author = {A. G. Chentsov},
     title = {Some {Properties} of {Ultrafilters} {Related} to {Their} {Use} {As} {Generalized} {Elements}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {271--286},
     year = {2023},
     volume = {29},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a19/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Some Properties of Ultrafilters Related to Their Use As Generalized Elements
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 271
EP  - 286
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a19/
LA  - ru
ID  - TIMM_2023_29_2_a19
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Some Properties of Ultrafilters Related to Their Use As Generalized Elements
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 271-286
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a19/
%G ru
%F TIMM_2023_29_2_a19
A. G. Chentsov. Some Properties of Ultrafilters Related to Their Use As Generalized Elements. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 2, pp. 271-286. http://geodesic.mathdoc.fr/item/TIMM_2023_29_2_a19/

[1] Varga Dzh., Optimalnoe upravlenie diffferentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 620 pp.

[2] Daffin R.Dzh., “Beskonechnye programmy”, Lineinye neravenstva i smezhnye voprosy, IL, M., 1959, 263–267

[3] Golshtein E.G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 352 pp.

[4] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp.

[5] Panasyuk A.I., Panasyuk V.I., Asimptoticheskaya magistralnaya optimizatsiya upravlyaemykh sistem, Nauka i tekhnika, Minsk, 1986, 296 pp. | MR

[6] Chentsov A.G., Baklanov A.P., “Ob odnoi zadache asimptoticheskogo analiza, svyazannoi s postroeniem oblasti dostizhimosti”, Tr. MIRAN, 291 (2015), 292–311 | DOI | Zbl

[7] Chentsov A.G., Baklanov A.P., Savenkov I.I., “Zadacha o dostizhimosti s ogranicheniyami asimptoticheskogo kharaktera”, Izv. In-ta matematiki i informatiki Udmurt. gos. un-ta, 47:1 (47) (2016), 54–118 | MR | Zbl

[8] Chentsov A.G., “Kompaktifikatory v konstruktsiyakh rasshirenii zadach o dostizhimosti s ogranicheniyami asimptoticheskogo kharaktera”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:1 (2016), 294–309 | MR

[9] Chentsov A.G., Pytkeev E.G., “Constraints of asymptotic nature and attainability problems”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:4 (2019), 569–582 | DOI | MR | Zbl

[10] Bulinskii A.V., Shiryaev A.N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 402 pp.

[11] Aleksandrov P.S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Editorial, URSS, M., 2004, 368 pp.

[12] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968, 272 pp.

[13] Engelking R., Obschaya topologiya, Mir, M., 1986, 752 pp. | MR

[14] Arkhangelskii A.V., “Kompaktnost”, Obschaya topologiya-2, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 50, VINITI, M., 1989, 5–128

[15] Chentsov A.G., “Ultrafiltry i maksimalnye stseplennye sistemy: osnovnye svoistva i topologicheskie konstruktsii”, Izv. In-ta matematiki i informatiki Udmurt. gos. un-ta, 52:1 (2018), 86–102 | DOI | MR | Zbl

[16] Chentsov A.G., “O superkompaktnosti prostranstva ultrafiltrov s topologiei volmenovskogo tipa”, Izv. In-ta matematiki i informatiki Udmurt. gos. un-ta, 54:1 (2019), 74–101 | Zbl

[17] Chentsov A.G., “Nekotorye svoistva ultrafiltrov, svyazannye s konstruktsiyami rasshirenii”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyut. nauki, 2014, no. 1, 87–101 | Zbl

[18] Chentsov A.G., “K voprosu o realizatsii elementov prityazheniya v abstraktnykh zadachakh o dostizhimosti”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyut. nauki, 25:2 (2015), 212–229 | Zbl

[19] Chentsov A.G., “Filtry i ultrafiltry v konstruktsiyakh mnozhestv prityazheniya”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyut. nauki, 2011, no. 1, 113–142 | Zbl

[20] Chentsov A.G., “Preobrazovaniya ultrafiltrov i ikh primenenie v konstruktsiyakh mnozhestv prityazheniya”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyut. nauki, 2012, no. 3, 85–102 | MR | Zbl

[21] de Groot J., “Superextensions and supercompactness”, Proc. I. Intern. Symp. on extension theory of topological structures and its applications, VEB Deutscher Verlag Wis., Berlin, 1969, 89–90 | MR

[22] van Mill J., Supercompactness and Wallman spaces, Math. Center Tract., 85, Mathematisch Centrum, Amsterdam, 1977, 238 pp. | MR | Zbl

[23] Strok M., Szymanski A., “Compact metric spaces have binary subbases ”, Fund. Math., 89:1 (1975), 81–91 | DOI | MR | Zbl

[24] Fedorchuk V.V., Filippov V.V., Obschaya topologiya. Osnovnye konstruktsii, Fizmatlit, M., 2006, 336 pp.

[25] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 310 pp.