Semirings of continuous partial numerical functions with extended addition
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 56-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article deals with the semiring of all continuous functions on a topological space $X$ with values in the topological field of real numbers $\mathbb{R}\cup\{\varnothing\}$, which is completed by the isolated zero $\varnothing$. Operations of addition and multiplication over functions are pointwise. This semiring coincides with the semiring $CP(X)$ of all continuous partial real-valued functions whose domains are clopen subsets of the topological space $X$. The maximal ideals and maximal congruences of the semirings $CP(X)$ are described. A class of maximal subalgebras in the semirings $CP(X)$ is found. It is proved that any Hewitt space $X$ is defined by the semiring $CP(X)$. The case of a finite discrete space $X$ is studied.
Keywords: extended field of real numbers, topological space, semiring of continuous functions, partial function, ideal, congruence, definability.
Mots-clés : subalgebra
@article{TIMM_2023_29_1_a3,
     author = {E.M. Vechtomov and E. N. Lubyagina},
     title = {Semirings of continuous partial numerical functions with extended addition},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {56--66},
     year = {2023},
     volume = {29},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a3/}
}
TY  - JOUR
AU  - E.M. Vechtomov
AU  - E. N. Lubyagina
TI  - Semirings of continuous partial numerical functions with extended addition
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 56
EP  - 66
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a3/
LA  - ru
ID  - TIMM_2023_29_1_a3
ER  - 
%0 Journal Article
%A E.M. Vechtomov
%A E. N. Lubyagina
%T Semirings of continuous partial numerical functions with extended addition
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 56-66
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a3/
%G ru
%F TIMM_2023_29_1_a3
E.M. Vechtomov; E. N. Lubyagina. Semirings of continuous partial numerical functions with extended addition. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 56-66. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a3/

[1] Vechtomov E.M., “O polukoltsakh chastichnykh funktsii s rasshirennym slozheniem”, Mezhdunar. konf., posvyaschennaya 90-letiyu kafedry vysshei algebry mekh.-mat. fak. MGU, tez. dokl., MGU, Moskva, 2019, 18–19

[2] Vechtomov E.M., Lubyagina E.N., Sidorov V.V., Chuprakov D.V., Elementy funktsionalnoi algebry, v 2 t., v. 1, OOO Izd-vo «Raduga-PRESS», Kirov, 2016, 384 pp.; т. 2, 316 с.

[3] Gelfand I.M., Kolmogorov A.N., “O koltsakh nepreryvnykh funktsii na topologicheskikh prostranstvakh”, Dokl. AN SSSR, 22:1 (1939), 11–15 | Zbl

[4] Grettser G., Obschaya teoriya reshetok, per. s angl., Mir, M., 1982, 456 pp.

[5] Sikorskii R., Bulevy algebry, per. s ang., Mir, M., 1969, 376 pp.

[6] Engelking R., Obschaya topologiya, per. s angl., Mir, M., 1986, 752 pp.

[7] Chermnykh V. V., “Functional representations of semirings”, J. Math. Sci. (NY), 187:2 (2012), 187–267 | DOI | MR | Zbl

[8] Gillman L., Henriksen M., Jerison M, “On a theorem of Gelfand and Kolmogoroff concerning maximal ideals in rings of continuous functions”, Proc. Amer. Math. Soc., 5:3 (1954), 447–455 | DOI | MR | Zbl

[9] Gillman L., Jerison M., Rings of continuous functions, Springer-Verlag, NY, 1960, 300 pp. | MR

[10] Golan J.S., Semirings and their applications, Kluwer Acad. Publ., Dordrecht, 1999, 382 pp. | MR | Zbl