Extremal interpolation in the mean with overlapping averaging intervals and the smallest norm of a linear differential operator
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 219-232

Voir la notice de l'article provenant de la source Math-Net.Ru

The Yanenko–Stechkin–Subbotin problem of extremal functional interpolation in the mean is considered for sequences infinite in both directions on a uniform grid of the numerical axis with the smallest norm in the space $L_p(R)$ $(1 $ of a linear differential operator $\mathcal{L}_n$ with constant coefficients. It is assumed that the generalized finite differences of each sequence corresponding to the operator $\mathcal{L}_n$ are bounded in the space $l_p$, the grid step $h$ and the averaging step $h_1$ are related by the inequality $h$, and the operator $\mathcal{L}_n$ is formally self-adjoint. Under these assumptions, in the case of odd $n$, the smallest norm of the operator is found exactly, and the extremal function is a generalized $\mathcal{L}$-spline whose knots coincide with the interpolation nodes. This work continues the research of this problem by Yu. N. Subbotin and the author started by Subbotin in 1965.
Keywords: extremal interpolation, splines, uniform grid, formally self-adjoint differential operator, splines.
Mots-clés : minimum norm
@article{TIMM_2023_29_1_a16,
     author = {V. T. Shevaldin},
     title = {Extremal interpolation in the mean with overlapping averaging intervals and the smallest norm of a linear differential operator},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {219--232},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a16/}
}
TY  - JOUR
AU  - V. T. Shevaldin
TI  - Extremal interpolation in the mean with overlapping averaging intervals and the smallest norm of a linear differential operator
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 219
EP  - 232
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a16/
LA  - ru
ID  - TIMM_2023_29_1_a16
ER  - 
%0 Journal Article
%A V. T. Shevaldin
%T Extremal interpolation in the mean with overlapping averaging intervals and the smallest norm of a linear differential operator
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 219-232
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a16/
%G ru
%F TIMM_2023_29_1_a16
V. T. Shevaldin. Extremal interpolation in the mean with overlapping averaging intervals and the smallest norm of a linear differential operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 219-232. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a16/