Extremal interpolation in the mean with overlapping averaging intervals and the smallest norm of a linear differential operator
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 219-232
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Yanenko–Stechkin–Subbotin problem of extremal functional interpolation in the mean is considered for sequences infinite in both directions on a uniform grid of the numerical axis with the smallest norm in the space $L_p(R)$ $(1 $ of a linear differential operator $\mathcal{L}_n$ with constant coefficients. It is assumed that the generalized finite differences of each sequence corresponding to the operator $\mathcal{L}_n$ are bounded in the space $l_p$, the grid step $h$ and the averaging step $h_1$ are related by the inequality $h$, and the operator $\mathcal{L}_n$ is formally self-adjoint. Under these assumptions, in the case of odd $n$, the smallest norm of the operator is found exactly, and the extremal function is a generalized $\mathcal{L}$-spline whose knots coincide with the interpolation nodes. This work continues the research of this problem by Yu. N. Subbotin and the author started by Subbotin in 1965.
Keywords: extremal interpolation, splines, uniform grid, formally self-adjoint differential operator, splines.
Mots-clés : minimum norm
@article{TIMM_2023_29_1_a16,
     author = {V. T. Shevaldin},
     title = {Extremal interpolation in the mean with overlapping averaging intervals and the smallest norm of a linear differential operator},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {219--232},
     year = {2023},
     volume = {29},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a16/}
}
TY  - JOUR
AU  - V. T. Shevaldin
TI  - Extremal interpolation in the mean with overlapping averaging intervals and the smallest norm of a linear differential operator
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 219
EP  - 232
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a16/
LA  - ru
ID  - TIMM_2023_29_1_a16
ER  - 
%0 Journal Article
%A V. T. Shevaldin
%T Extremal interpolation in the mean with overlapping averaging intervals and the smallest norm of a linear differential operator
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 219-232
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a16/
%G ru
%F TIMM_2023_29_1_a16
V. T. Shevaldin. Extremal interpolation in the mean with overlapping averaging intervals and the smallest norm of a linear differential operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 219-232. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a16/

[1] Subbotin Yu.N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. MIAN SSSR, 78 (1965), 24–42 | Zbl

[2] Subbotin Yu.N., “Funktsionalnaya interpolyatsiya v srednem s naimenshei $n$-oi proizvodnoi”, Tr. MIAN SSSR, 88 (1967), 39–60

[3] Subbotin Yu.N., “Ekstremalnye zadachi funktsionalnoi interpolyatsii i interpolyatsionnye v srednem splainy”, Tr. MIAN SSSR, 138 (1975), 118–173 | Zbl

[4] Subbotin Yu.N., Novikov S.I., Shevaldin V.T., “Ekstremalnaya funktsionalnaya interpolyatsiya i splainy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:3 (2018), 200–225 | DOI | MR

[5] Subbotin Yu.N., “Ekstremalnaya funktsionalnaya interpolyatsiya v srednem s naimenshim znacheniem $n$-oi proizvodnoi pri bolshikh intervalakh usredneniya”, Mat. zametki, 59:1 (1996), 114–132 | DOI | MR

[6] Subbotin Yu.N., “Some extremal problems of interpolation and interpolation in the mean”, East J. Approx., 2:2 (1996), 155–167 | MR | Zbl

[7] Subbotin Yu.N., “Ekstremalnaya v $L_p$ interpolyatsiya v srednem pri peresekayuschikhsya intervalakh usredneniya”, Izv. RAN. Ser. matematicheskaya, 61:1 (1997), 177–198 | DOI | MR | Zbl

[8] Sharma A., Tsimbalario I., “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Mat. zametki, 21:2 (1977), 161–173

[9] Shevaldin V.T., “Nekotorye zadachi ekstremalnoi interpolyatsii v srednem dlya lineinykh differentsialnykh operatorov”, Tr. MIAN SSSR, 164 (1983), 203–240 | MR | Zbl

[10] Shevaldin V.T., “Ekstremalnaya interpolyatsiya s naimenshim znacheniem normy lineinogo differentsialnogo operatora”, Mat. zametki, 27:5 (1980), 721–740 | MR | Zbl

[11] Shevaldin V.T., “Ob odnoi zadache ekstremalnoi interpolyatsii”, Mat. zametki, 29:4 (1981), 603–622 | MR | Zbl

[12] Shevaldin V.T., “Ekstremalnaya interpolyatsiya v srednem pri perekryvayuschikhsya intervalakh usredneniya i $L$-splainy”, Izv. RAN. Ser. matematicheskaya, 62:4 (1998), 201–224 | DOI | MR | Zbl

[13] Krein M.G., “Integralnye uravneniya na polupryamoi s yadrami, zavisyaschimi ot raznosti argumentov”, Uspekhi mat. nauk, 13:5(83) (1958), 3–120 | Zbl