Optimal Recovery on Classes of Functions Analytic in an Annulus
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 7-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $C_{r,R}$ be an annulus with boundary circles $\gamma_r$ and $\gamma_R$ centered at zero; its inner and outer radii are $r$ and $R$, respectively, $0$. On the class of functions analytic in the annulus $C_{r,R}$ with finite $L^2$-norms of the angular limits on the circle $\gamma_r$ and of the $n$th derivatives (of the functions themselves for $n=0$) on the circle $\gamma_R$, we study interconnected extremal problems for the operator $\psi_{\rho}^m$ that takes the boundary values of a function on $\gamma_r$ to its restriction (for $m=0$) or the restriction of its $m$th derivative (for $m>0$) to an intermediate circle $\gamma_\rho$, $r\rho$. The problem of the best approximation of $\psi_{\rho}^m$ by bounded linear operators from $L^2(\gamma_r)$ to $C(\gamma_\rho)$ is solved. A method for the optimal recovery of the $m$th derivative on an intermediate circle $\gamma_\rho$ from $L^2$-approximately given values of the function on the boundary circle $\gamma_r$ is proposed and its error is found. The Hadamard–Kolmogorov exact inequality, which estimates the uniform norm of the $m$th derivative on an intermediate circle $\gamma_\rho$ in terms of the $L^2$-norms of the limit boundary values of the function and the $n$th derivative on the circles $\gamma_r$ and $\gamma_R$, is derived.
Keywords: analytic functions, Hadamard three-circle theorem, Kolmogorov's inequality, optimal recovery.
@article{TIMM_2023_29_1_a0,
     author = {O. V. Akopyan and R. R. Akopyan},
     title = {Optimal {Recovery} on {Classes} of {Functions} {Analytic} in an {Annulus}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {7--23},
     year = {2023},
     volume = {29},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a0/}
}
TY  - JOUR
AU  - O. V. Akopyan
AU  - R. R. Akopyan
TI  - Optimal Recovery on Classes of Functions Analytic in an Annulus
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2023
SP  - 7
EP  - 23
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a0/
LA  - ru
ID  - TIMM_2023_29_1_a0
ER  - 
%0 Journal Article
%A O. V. Akopyan
%A R. R. Akopyan
%T Optimal Recovery on Classes of Functions Analytic in an Annulus
%J Trudy Instituta matematiki i mehaniki
%D 2023
%P 7-23
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a0/
%G ru
%F TIMM_2023_29_1_a0
O. V. Akopyan; R. R. Akopyan. Optimal Recovery on Classes of Functions Analytic in an Annulus. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 29 (2023) no. 1, pp. 7-23. http://geodesic.mathdoc.fr/item/TIMM_2023_29_1_a0/

[1] Arestov V.V., “O ravnomernoi regulyarizatsii zadachi vychisleniya znachenii operatora”, Mat. zametki, 22:2 (1977), 231–244 | MR | Zbl

[2] Arestov V.V., “Nailuchshee vosstanovlenie operatorov i rodstvennye zadachi”, cb. tr. Vsesoyuz. shk. po teorii funktsii (Dushanbe, avgust 1986 g.), Tr. MIAN, 189, 3–20 | MR | Zbl

[3] Arestov V.V., Gabushin V.N., “Nailuchshee priblizhenie neogranichennykh operatorov ogranichennymi”, Izv. vuzov. Matematika, 1995, no. 11, 42–68 | Zbl

[4] Arestov V.V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi mat. nauk, 51:6(312) (1996), 89–124 | DOI | MR | Zbl

[5] Babenko V.F., Korneichuk N.P., Kofanov V.A., Pichugov S.A., Neravenstva dlya proizvodnykh i ikh prilozheniya, Nauk. dumka, Kiev, 2003, 591 pp.

[6] Magaril-Ilyaev G.G., Osipenko K.Yu., “Ob optimalnom vosstanovlenii funktsionalov po netochnym dannym”, Mat. zametki, 50:6 (1991), 85–93

[7] Osipenko K.Yu., Optimal recovery of analytic functions, NOVA Science Publ. Inc., Huntington, 2000, 229 pp.

[8] Osipenko K.Yu., “Optimalnoe vosstanovlenie lineinykh operatorov v neevklidovykh metrikakh”, Mat. sb., 205:10 (2014), 77–106 | DOI | Zbl

[9] Polia G., Sege G., Zadachi i teoremy iz analiza, v 2 t., v. 1, Nauka, M., 1978, 398 pp. | MR

[10] Akopyan R.R., “Nailuchshee priblizhenie operatora analiticheskogo prodolzheniya na klasse analiticheskikh v koltse funktsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:4 (2012), 3–13

[11] Robinson R.M., “Analytic functions in circular rings”, Duke Math. J., 10:2 (1943), 341–354 | DOI | MR | Zbl

[12] Goluzin G.M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, GITTL, M.; L.; Nauka, M., 1952, 628 pp. | MR

[13] Akopyan R.R., “Approximation of the differentiation operator on the class of functions analytic in an annulus”, Ural Math. J., 3:2 (2017), 6–13 | DOI | MR | Zbl

[14] Tumarkin G.Ts., Khavinson S.Ya., “Kachestvennye svoistva reshenii ekstremalnykh zadach nekotorykh tipov”, Issledovanie po sovremennym problemam teorii funktsii kompleksnogo peremennogo, sb. tr., Fizmatgiz, M., 1960, 77–95

[15] Khavinson S.Ya., “Analiticheskie funktsii ogranichennogo vida (granichnye i ekstremalnye svoistva)”, Itogi nauki. Mat. analiz. 1963, VINITI, M., 1965, 5–80

[16] Khavinson S.Ya., “O predstavlenii ekstremalnykh funktsii v klassakh $E_q$ cherez funktsii Grina i Neimana”, Mat. zametki, 16:5 (1974), 707–716 | Zbl

[17] Khavinson S.Ya., Kuzina T.S., “The structural formulae for extremal functions in Hardy classes on finite Riemann surfaces”, Operator Theory: Advances and Applications, 158 (2005), 37–57 | DOI | MR | Zbl

[18] Osipenko K.Y., Stessin M.I., “Hadamard and Schwarz type theorems and optimal recovery in spaces of analytic functions”, Constr. Approx., 31 (2010), 37–67 | DOI | MR | Zbl

[19] Akopyan R.R., “Analog teoremy o dvukh konstantakh i optimalnoe vosstanovlenie analiticheskikh funktsii”, Mat. sb., 210:10 (2019), 3–36 | DOI | MR

[20] Osipenko K.Yu., “Ob optimalnykh metodakh vosstanovleniya v prostranstvakh Khardi — Soboleva”, Mat. sb., 192:2 (2001), 67–86 | DOI | Zbl

[21] Gonzalez-Vera P., Stessin M.I., “Joint spectra of Toeplitz operators and optimal recovery of analytic functions”, Constr. Approx., 36:1 (2012), 53–82 | DOI | MR | Zbl

[22] DeGraw A., “Optimal recovery of holomorphic functions from inaccurate information about radial integration”, Amer. J. Comput. Math., 2:4 (2012), 258–268 | DOI | MR

[23] Osipenko K.Yu., “Neravenstvo Khardi — Littlvuda — Polia dlya analiticheskikh funktsii iz prostranstv Khardi — Soboleva”, Mat. sb., 197:3 (2006), 15–34 | DOI | MR | Zbl

[24] Ovchintsev M., “Linear best method for recovering the second derivatives of Hardy class functions”, E3S Web of Conferences, 164 (2020), 02013 | DOI

[25] Taikov L.V., “Neravenstva tipa Kolmogorova i nailuchshie formuly chislennogo differentsirovaniya”, Mat. zametki, 4:2 (1968), 233–238

[26] Akopyan R.R., “Nailuchshee priblizhenie operatorov differentsirovaniya na klasse Soboleva analiticheskikh v polose funktsii”, Sib. elektron. mat. izv., 18:2 (2021), 1286–1298 | DOI | MR | Zbl

[27] Babenko V., Babenko Yu., Kriachko N., Skorokhodov D., “On Hardy–Littlewood–Pólya and Taikov type inequalities for multiple operators in Hilbert spaces”, Analysis Mathematica, 47 (2021), 709–745 | DOI | MR | Zbl

[28] Vvedenskaya E. V., Osipenko K. Yu., “Diskretnye analogi neravenstva L.V. Taikova i vosstanovlenie posledovatelnostei, zadannykh netochno”, Mat. zametki, 92:4 (2012), 515–527 | DOI | Zbl

[29] Shadrin A.Yu., “Neravenstva tipa Kolmogorova i otsenki splain-interpolyatsii dlya periodicheskikh klassov $W^m_2$”, Mat. zametki, 48:4 (1990), 132–139 | MR | Zbl