Voir la notice du chapitre de livre
Mots-clés : integer partition, bipartite graph
@article{TIMM_2022_28_4_a4,
author = {V. A. Baranskii and T. A. Senchonok},
title = {An algorithm for taking a bipartite graph to the bipartite threshold form},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {54--63},
year = {2022},
volume = {28},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a4/}
}
TY - JOUR AU - V. A. Baranskii AU - T. A. Senchonok TI - An algorithm for taking a bipartite graph to the bipartite threshold form JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 54 EP - 63 VL - 28 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a4/ LA - ru ID - TIMM_2022_28_4_a4 ER -
V. A. Baranskii; T. A. Senchonok. An algorithm for taking a bipartite graph to the bipartite threshold form. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 54-63. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a4/
[1] Asanov M.O., Baranskii V.A., Rasin V.V., Diskretnaya matematika: grafy, matroidy, algoritmy, 2-e izd., ispr. i dop., Lan, SPb., 2010, 368 pp.
[2] Andrews G.E., The theory of partitions, Cambridge Univ. Press, Cambridge, 1976, 255 pp. | MR
[3] Ivanyi A., Lucz L., Gombos G., Matuszka T., “Parallel enumeration of degree sequences of simple graphs”, Acta Univ. Sapientiae, Informatica, 4:2 (2012), 260–288
[4] Baranskii V.A., Senchonok T.A., “Dvudolno-porogovye grafy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 26:2 (2020), 56–67 | DOI | MR
[5] Mahadev N.V.R., Peled U.N., Threshold graphs and related topics, Ser. Annals of Discr. Math., 56, North-Holland Publishing Co, Amsterdam, 1995, 542 pp. | MR
[6] Baransky V.A., Senchonok T.A., “On maximal graphical partitions that a the nearest to a given graphical partition”, Sib. Elect. Math. Reports, 17 (2020), 338–363 | DOI | MR