Mots-clés : viscous incompressible fluid.
@article{TIMM_2022_28_4_a22,
author = {V. V. Shumilova},
title = {The spectrum of one-dimensional eigenoscillations of two-phase layered media with periodic structure},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {250--261},
year = {2022},
volume = {28},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a22/}
}
TY - JOUR AU - V. V. Shumilova TI - The spectrum of one-dimensional eigenoscillations of two-phase layered media with periodic structure JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 250 EP - 261 VL - 28 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a22/ LA - ru ID - TIMM_2022_28_4_a22 ER -
V. V. Shumilova. The spectrum of one-dimensional eigenoscillations of two-phase layered media with periodic structure. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 250-261. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a22/
[1] Oleinik O.A., Iosifyan G.A., Shamaev A.S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990, 311 pp.
[2] Zhikov V.V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Mat. sb., 191:7 (2000), 31–72 | MR
[3] Zhikov V.V., “O lakunakh v spektre nekotorykh divergentnykh ellipticheskikh operatorov s periodicheskimi koeffitsientami”, Algebra i analiz, 16:5 (2004), 34–58
[4] Babych N.O., Kamotski I.V., Smyshlyaev V.P., “Homogenization of spectral problems in bounded domains with doubly high contrasts”, Netw. Heterog. Media, 3:3 (2008), 413–436 | DOI | MR
[5] Kosmodemyanskii D.A., Shamaev A.S., “Spektralnye svoistva nekotorykh zadach mekhaniki silno neodnorodnykh sred”, Izv. RAN. Mekhanika tverdogo tela, 6 (2009), 75–114
[6] Vlasov V.V., Gavrikov A.A., Ivanov S.A., Knyaz'kov D. Yu., Samarin V.A., Shamaev A.S., “Spectral properties of combined media”, J. Math. Sci., 164:6 (2010), 948–963 | DOI | MR
[7] Cooper S., “Homogenisation and spectral convergence of a periodic elastic composite with weakly compressible inclusions”, Applicable Analysis, 93:7 (2014), 1401–1430 | DOI | MR
[8] Cherednichenko K.D., Cooper S., Guenneau S., “Spectral analysis of one-dimensional high-contrast elliptic problems with periodic coefficients”, Multiscale Model. Simul., 13:1 (2015), 72–98 | DOI | MR
[9] Leugering G., Nazarov S.A., Taskinen J., “The band-gap structure of the spectrum in a periodic medium of masonry type”, Netw. Heterog. Media, 15:4 (2020), 555–580 | DOI | MR
[10] Akulenko L.D., Nesterov S.V., “Inertsionnye i dissipativnye svoistva poristoi sredy, zapolnennoi vyazkoi zhidkostyu”, Izv. RAN. Mekhanika tverdogo tela, 1 (2005), 109–119
[11] Molotkov L.A., Matrichnyi metod v teorii rasprostraneniya voln v sloistykh uprugikh i zhidkikh sredakh, Nauka, L., 1984, 201 pp.
[12] Pobedrya B.E., Mekhanika kompozitsionnykh materialov, Izd-vo MGU, M., 1984, 336 pp.
[13] Brekhovskikh L.M., Godin O.A., Akustika sloistykh sred, Nauka, M., 1989, 416 pp.
[14] Shamaev A.S., Shumilova V.V., “O spektre sobstvennykh kolebanii v srede iz sloev uprugogo materiala i vyazkoi zhidkosti”, Dokl. RAN, 448:1 (2013), 43–46 | MR
[15] Shamaev A.S., Shumilova V.V., “Spektr odnomernykh sobstvennykh kolebanii sloistoi sredy, sostoyaschei iz uprugogo materiala i vyazkoi neszhimaemoi zhidkosti”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2020, no. 4, 53–57 | MR
[16] Shumilova V.V., “Spektr sobstvennykh kolebanii sloistoi sredy, sostoyaschei iz materiala Kelvina - Foigta i vyazkoi neszhimaemoi zhidkosti”, Sib. elektron. mat. izv., 17 (2020), 21–31 | DOI | MR
[17] Ilyushin A.A., Pobedrya B.E., Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970, 280 pp. | MR
[18] Shamaev A.S., Shumilova V.V., “Asimptoticheskoe povedenie spektra odnomernykh kolebanii v srede iz sloev uprugogo materiala i vyazkouprugogo materiala Kelvina - Foigta”, Tr. MIAN, 295 (2016), 218–228 | DOI
[19] Vlasov V.V., By Dzh., Kabirova G.R., “Korrektnaya razreshimost i spektralnye svoistva abstraktnykh giperbolicheskikh uravnenii s posledeistviem”, Sovremennaya matematika. Fundament. napravleniya, 35 (2010), 44–59
[20] Shumilova V.V., “Spektralnyi analiz odnogo klassa integro-differentsialnykh uravnenii teorii vyazkouprugosti”, Problemy mat. analiza, 73 (2013), 167–172