The spectrum of one-dimensional eigenoscillations of two-phase layered media with periodic structure
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 250-261 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the spectrum of one-dimensional eigenoscillations along the $Ox_1$ axis of two-phase layered media with periodic structure occupying the band $0$. The period of the media is a band $0$ composed of $2M$ alternating layers of an isotropic elastic or viscoelastic material (the first phase) and a viscous incompressible fluid (the second phase). It is assumed that the number of periods $N=L/ \varepsilon$ is an integer, and the layers are parallel to the $Ox_2 x_3$ plane. The spectrum is denoted by $S_\varepsilon$ and is defined as the set of eigenvalues of a boundary value problem for a homogeneous system of ordinary differential equations with conjugation conditions at the interfaces between the solid and fluid layers. These conditions are derived directly from the initial assumption on the continuity of displacements and normal stresses at the interfaces between the layers. It is shown that the spectrum $S_\varepsilon$ consists of the roots of transcendental equations, the number of which is equal to the number of periods $N$ contained within the band $0$. The roots of these equations can only be found numerically, except for one particular case. In the case of multi-layered media with $N\gg 1$, the finite limits of the sequences $\lambda(\varepsilon)\in S_\varepsilon$ as $\varepsilon\to 0$ are proposed to be used as initial approximations. It is established that the set of all finite limits coincides with the set of roots of rational equations, denoted by $S$. The coefficients of these equations, and hence the points of the set $S$ depend on the volume fraction of the fluid within the layered medium and do not depend on the number $M$ of the fluid layers within the period. It is proved that for any $M\geq 1$ the spectrum $S_\varepsilon$ converges in the sense of Hausdorff to the set $S$ as $\varepsilon\to 0$.
Keywords: spectrum of eigenoscillations, layered medium, two-phase medium, elastic material, viscoelastic material
Mots-clés : viscous incompressible fluid.
@article{TIMM_2022_28_4_a22,
     author = {V. V. Shumilova},
     title = {The spectrum of one-dimensional eigenoscillations of two-phase layered media with periodic structure},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {250--261},
     year = {2022},
     volume = {28},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a22/}
}
TY  - JOUR
AU  - V. V. Shumilova
TI  - The spectrum of one-dimensional eigenoscillations of two-phase layered media with periodic structure
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 250
EP  - 261
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a22/
LA  - ru
ID  - TIMM_2022_28_4_a22
ER  - 
%0 Journal Article
%A V. V. Shumilova
%T The spectrum of one-dimensional eigenoscillations of two-phase layered media with periodic structure
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 250-261
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a22/
%G ru
%F TIMM_2022_28_4_a22
V. V. Shumilova. The spectrum of one-dimensional eigenoscillations of two-phase layered media with periodic structure. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 250-261. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a22/

[1] Oleinik O.A., Iosifyan G.A., Shamaev A.S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990, 311 pp.

[2] Zhikov V.V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Mat. sb., 191:7 (2000), 31–72 | MR

[3] Zhikov V.V., “O lakunakh v spektre nekotorykh divergentnykh ellipticheskikh operatorov s periodicheskimi koeffitsientami”, Algebra i analiz, 16:5 (2004), 34–58

[4] Babych N.O., Kamotski I.V., Smyshlyaev V.P., “Homogenization of spectral problems in bounded domains with doubly high contrasts”, Netw. Heterog. Media, 3:3 (2008), 413–436 | DOI | MR

[5] Kosmodemyanskii D.A., Shamaev A.S., “Spektralnye svoistva nekotorykh zadach mekhaniki silno neodnorodnykh sred”, Izv. RAN. Mekhanika tverdogo tela, 6 (2009), 75–114

[6] Vlasov V.V., Gavrikov A.A., Ivanov S.A., Knyaz'kov D. Yu., Samarin V.A., Shamaev A.S., “Spectral properties of combined media”, J. Math. Sci., 164:6 (2010), 948–963 | DOI | MR

[7] Cooper S., “Homogenisation and spectral convergence of a periodic elastic composite with weakly compressible inclusions”, Applicable Analysis, 93:7 (2014), 1401–1430 | DOI | MR

[8] Cherednichenko K.D., Cooper S., Guenneau S., “Spectral analysis of one-dimensional high-contrast elliptic problems with periodic coefficients”, Multiscale Model. Simul., 13:1 (2015), 72–98 | DOI | MR

[9] Leugering G., Nazarov S.A., Taskinen J., “The band-gap structure of the spectrum in a periodic medium of masonry type”, Netw. Heterog. Media, 15:4 (2020), 555–580 | DOI | MR

[10] Akulenko L.D., Nesterov S.V., “Inertsionnye i dissipativnye svoistva poristoi sredy, zapolnennoi vyazkoi zhidkostyu”, Izv. RAN. Mekhanika tverdogo tela, 1 (2005), 109–119

[11] Molotkov L.A., Matrichnyi metod v teorii rasprostraneniya voln v sloistykh uprugikh i zhidkikh sredakh, Nauka, L., 1984, 201 pp.

[12] Pobedrya B.E., Mekhanika kompozitsionnykh materialov, Izd-vo MGU, M., 1984, 336 pp.

[13] Brekhovskikh L.M., Godin O.A., Akustika sloistykh sred, Nauka, M., 1989, 416 pp.

[14] Shamaev A.S., Shumilova V.V., “O spektre sobstvennykh kolebanii v srede iz sloev uprugogo materiala i vyazkoi zhidkosti”, Dokl. RAN, 448:1 (2013), 43–46 | MR

[15] Shamaev A.S., Shumilova V.V., “Spektr odnomernykh sobstvennykh kolebanii sloistoi sredy, sostoyaschei iz uprugogo materiala i vyazkoi neszhimaemoi zhidkosti”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2020, no. 4, 53–57 | MR

[16] Shumilova V.V., “Spektr sobstvennykh kolebanii sloistoi sredy, sostoyaschei iz materiala Kelvina - Foigta i vyazkoi neszhimaemoi zhidkosti”, Sib. elektron. mat. izv., 17 (2020), 21–31 | DOI | MR

[17] Ilyushin A.A., Pobedrya B.E., Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970, 280 pp. | MR

[18] Shamaev A.S., Shumilova V.V., “Asimptoticheskoe povedenie spektra odnomernykh kolebanii v srede iz sloev uprugogo materiala i vyazkouprugogo materiala Kelvina - Foigta”, Tr. MIAN, 295 (2016), 218–228 | DOI

[19] Vlasov V.V., By Dzh., Kabirova G.R., “Korrektnaya razreshimost i spektralnye svoistva abstraktnykh giperbolicheskikh uravnenii s posledeistviem”, Sovremennaya matematika. Fundament. napravleniya, 35 (2010), 44–59

[20] Shumilova V.V., “Spektralnyi analiz odnogo klassa integro-differentsialnykh uravnenii teorii vyazkouprugosti”, Problemy mat. analiza, 73 (2013), 167–172