On a new class of two-dimensional Volterra integral equations of the first kind with variable limits of integration
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 216-225 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper deals with linear two-dimensional Volterra integral equations of the first kind with variable lower and upper limits of integration. Such equations arise when describing the transient processes of a nonlinear dynamic system, represented as a finite segment (a polynomial) of the Volterra integro-power series. A new method for identifying symmetric kernels in the quadratic Volterra polynomial is presented, in which the input $x(t)$ and output $y(t)$ signals are scalar functions of time. The test signals used to solve this problem are chosen from the class of piecewise linear functions, which is explained by the specifics of the studied technical systems of the “input–output” type. This statement develops the approach based on test signals in the form of combinations of Heaviside functions and presented in the publications of A. S. Apartsyn. An explicit inversion formula is derived for a selected class of nonclassical Volterra equations of the first kind. Results about the existence and uniqueness of solutions of the corresponding integral equations are proved.
Keywords: nonlinear dynamic system
Mots-clés : identification, Volterra equations.
@article{TIMM_2022_28_4_a19,
     author = {S. V. Solodusha},
     title = {On a new class of two-dimensional {Volterra} integral equations of the first kind with variable limits of integration},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {216--225},
     year = {2022},
     volume = {28},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a19/}
}
TY  - JOUR
AU  - S. V. Solodusha
TI  - On a new class of two-dimensional Volterra integral equations of the first kind with variable limits of integration
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 216
EP  - 225
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a19/
LA  - ru
ID  - TIMM_2022_28_4_a19
ER  - 
%0 Journal Article
%A S. V. Solodusha
%T On a new class of two-dimensional Volterra integral equations of the first kind with variable limits of integration
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 216-225
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a19/
%G ru
%F TIMM_2022_28_4_a19
S. V. Solodusha. On a new class of two-dimensional Volterra integral equations of the first kind with variable limits of integration. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 4, pp. 216-225. http://geodesic.mathdoc.fr/item/TIMM_2022_28_4_a19/

[1] Verlan A.F., Sizikov V.S., Integralnye uravneniya: metody, algoritmy, programmy, Naukova dumka, Kiev, 1986, 543 pp. | MR

[2] Volterra V., Teoriya funktsionalov, integralnykh i integro-differentsialnykh uravnenii, Nauka, M., 1982, 302 pp.

[3] Boyd S., Chua L.O., Desoer C.A., “Analytical foundations of Volterra series”, IMA J. Math. Control. Inf., 1:3 (1984), 243–282 | DOI

[4] Cheng C.M., Peng Z.K., Zhang W.M., Meng G., “Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review”, Mech. Syst. Signal Process, 87 (2017), 340–364 | DOI

[5] Solodusha S.V., Grazhdantseva E.Yu., “Testovoe polinomialnoe uravnenie Volterra I roda v zadache identifikatsii vkhodnykh signalov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 27:4 (2021), 161–174 | DOI | MR

[6] Abas V.M.A., Arutyunyan R.V., “Analiz i optimizatsiya nelineinykh sistem s pamyatyu na osnove integro-funktsionalnykh ryadov Volterra i metodov Monte-Karlo”, Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Tekhnicheskie nauki, 2021, no. 3(211), 30–34 | DOI

[7] Brunner H., Volterra integral equations: an introduction to theory and applications, Cambridge Univ. Press, Cambridge, 2017, 387 pp. | DOI | MR

[8] Asanov A.A., Choyubekov S.M., “Reshenie neklassicheskikh integralnykh uravnenii Volterra I roda s vyrozhdennym nelineinym yadrom”, Mezhdunar. nauch.-issled. zhurnal, 2018, no. 4(70), 134–138 | DOI

[9] Glushkov V.M., “Ob odnom klasse dinamicheskikh makroekonomicheskikh modelei”, Upravlyayuschie sistemy i mashiny, 1977, no. 2, 3–6

[10] Boikov I.V., Tynda A.N., “Priblizhennoe reshenie nelineinykh integralnykh uravnenii teorii razvivayuschikhsya sistem”, Differents. uravneniya, 39:9 (2003), 1214–1223 | MR

[11] Markova E.V., Sidler I.V., “Numerical solution of the age structure optimization problem for basic types of power plants”, Yugosl. J. Oper. Res., 29:1 (2019), 81–92 | DOI | MR

[12] Volkodavov V.F., Rodionova I.N., “Formuly obrascheniya nekotorykh dvumernykh integralnykh uravnenii Volterra pervogo roda”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 9 (1998), 30–32

[13] Apartsin A.S., “Ob integralnykh uravneniyakh Volterra I roda v teorii razvivayuschikhsya sistem”, Chislennye metody optimizatsii i analiza, Nauka, Sib. otd-nie, Novosibirsk, 1992, 58–67 | MR

[14] Apartsin A.S., Neklassicheskie uravneniya Volterra I roda: teoriya i chislennye metody, Nauka, Novosibirsk, 1999, 193 pp.

[15] Bulatov M.V., Machkhina M.N., Phat V.N., “Existence and uniqueness of solutions to nonlinear integral-algebraic equations with variable limits of integrations”, Commun. Appl. Nonlinear Anal., 21:1 (2014), 65–76 | MR

[16] Botoroeva M.N., Bulatov M.V., “Prilozheniya i metody chislennogo resheniya odnogo klassa integro-algebraicheskikh uravnenii s peremennymi predelami integrirovaniya”, Izvestiya Irkut. gos. un-ta. Seriya Matematika, 20 (2017), 3–16 | DOI | MR

[17] Apartsin A.S., “Novyi algoritm modelirovaniya nelineinykh dinamicheskikh sistem na baze polinomov Volterra”, Optimizatsiya, upravlenie, intellekt, 5 (2000), 26–32

[18] Novikov S.P., Prakticheskaya identifikatsiya dinamicheskikh kharakteristik ob'ektov upravleniya teploenergeticheskogo oborudovaniya, Izd-vo NGTU, Novosibirsk, 2004, 64 pp.

[19] Apartsin A.S., “O novykh klassakh lineinykh mnogomernykh uravnenii I roda tipa Volterra”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 1995, no. 11, 28–41

[20] Solodusha S.V., “New classes of Volterra integral equations of the first kind related to the modeling of the wind turbine dynamics”, 15th Intern. Conf. Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference), 2020, 9140662 | DOI