Perturbation method, subdifferentials of nonsmooth analysis, and regularization of the Lagrange multiplier rule in nonlinear optimal control
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 202-221

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the regularization of classical optimality conditions — the Lagrange principle (LP) and the Pontryagin maximum principle (PMP) — in a regular parametric nonlinear (nonconvex) optimal control problem for a parabolic equation with boundary control and with an operator equality-constraint additively depending on the parameter (perturbation method). The set of admissible controls of the problem and the values of the operator defining the equality-constraint are embedded into the spaces of square-summable functions. The main purpose of the regularized LP and PMP is the stable generation of minimizing approximate solutions (MASs) in the sense of J. Warga in the problem under consideration. The regularized LP and PMP are formulated as existence theorems for MASs consisting of minimals (subminimals) of modified Lagrange functionals whose constructions are direct consequences of the subdifferential properties of a lower semicontinuous and, generally speaking, nonconvex value function as a function of the parameter of the problem. They “overcome” the ill-posedness properties of the LP and PMP, are regularizing algorithms, and serve as a theoretical basis for creating algorithms for the practical solution of an optimization problem.
Keywords: nonlinear optimal control, operator constraint, subdifferentials of nonsmooth analysis, dual regularization, minimizing sequence, regularizing algorithm, Lagrange principle, Kuhn–Tucker theorem, Pontryagin maximum principle.
Mots-clés : parabolic equation, perturbation method
@article{TIMM_2022_28_3_a15,
     author = {M. I. Sumin},
     title = {Perturbation method, subdifferentials of nonsmooth analysis, and regularization of the {Lagrange} multiplier rule in nonlinear optimal control},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {202--221},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a15/}
}
TY  - JOUR
AU  - M. I. Sumin
TI  - Perturbation method, subdifferentials of nonsmooth analysis, and regularization of the Lagrange multiplier rule in nonlinear optimal control
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 202
EP  - 221
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a15/
LA  - ru
ID  - TIMM_2022_28_3_a15
ER  - 
%0 Journal Article
%A M. I. Sumin
%T Perturbation method, subdifferentials of nonsmooth analysis, and regularization of the Lagrange multiplier rule in nonlinear optimal control
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 202-221
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a15/
%G ru
%F TIMM_2022_28_3_a15
M. I. Sumin. Perturbation method, subdifferentials of nonsmooth analysis, and regularization of the Lagrange multiplier rule in nonlinear optimal control. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 202-221. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a15/