Perturbation method, subdifferentials of nonsmooth analysis, and regularization of the Lagrange multiplier rule in nonlinear optimal control
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 202-221
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the regularization of classical optimality conditions — the Lagrange principle (LP) and the Pontryagin maximum principle (PMP) — in a regular parametric nonlinear (nonconvex) optimal control problem for a parabolic equation with boundary control and with an operator equality-constraint additively depending on the parameter (perturbation method). The set of admissible controls of the problem and the values of the operator defining the equality-constraint are embedded into the spaces of square-summable functions. The main purpose of the regularized LP and PMP is the stable generation of minimizing approximate solutions (MASs) in the sense of J. Warga in the problem under consideration. The regularized LP and PMP are formulated as existence theorems for MASs consisting of minimals (subminimals) of modified Lagrange functionals whose constructions are direct consequences of the subdifferential properties of a lower semicontinuous and, generally speaking, nonconvex value function as a function of the parameter of the problem. They “overcome” the ill-posedness properties of the LP and PMP, are regularizing algorithms, and serve as a theoretical basis for creating algorithms for the practical solution of an optimization problem.
Keywords: nonlinear optimal control, operator constraint, subdifferentials of nonsmooth analysis, dual regularization, minimizing sequence, regularizing algorithm, Lagrange principle, Kuhn–Tucker theorem, Pontryagin maximum principle.
Mots-clés : parabolic equation, perturbation method
@article{TIMM_2022_28_3_a15,
     author = {M. I. Sumin},
     title = {Perturbation method, subdifferentials of nonsmooth analysis, and regularization of the {Lagrange} multiplier rule in nonlinear optimal control},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {202--221},
     year = {2022},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a15/}
}
TY  - JOUR
AU  - M. I. Sumin
TI  - Perturbation method, subdifferentials of nonsmooth analysis, and regularization of the Lagrange multiplier rule in nonlinear optimal control
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 202
EP  - 221
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a15/
LA  - ru
ID  - TIMM_2022_28_3_a15
ER  - 
%0 Journal Article
%A M. I. Sumin
%T Perturbation method, subdifferentials of nonsmooth analysis, and regularization of the Lagrange multiplier rule in nonlinear optimal control
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 202-221
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a15/
%G ru
%F TIMM_2022_28_3_a15
M. I. Sumin. Perturbation method, subdifferentials of nonsmooth analysis, and regularization of the Lagrange multiplier rule in nonlinear optimal control. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 202-221. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a15/

[1] Alekseev V.M., Tikhomirov V.M., Fomin S.V., Optimalnoe upravlenie, Nauka, M., 1979, 432 pp. | MR

[2] Gamkrelidze R.V., “Matematicheskie raboty L.S. Pontryagina”, Tr. Mezhdunar. konf., posvyaschennoi 90-letiyu so dnya rozhdeniya L.S. Pontryagina (Moskva, 31 avgusta - 6 sentyabrya 1998 g.), v. I, Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 60, Optimalnoe upravlenie, VINITI, 1998, 5–23

[3] Fursikov A.V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999, 352 pp.

[4] Tröltzsch F., Optimal control of partial differential equations. Theory, methods and applications, Graduate Studies in Math., 112, AMS, Providence, RI, 2010, 400 pp. | DOI | MR | Zbl

[5] Sumin M.I., “Regulyarizovannaya parametricheskaya teorema Kuna - Takkera v gilbertovom prostranstve”, Zhurn. vychisl. matematiki i mat. fiziki, 51:9 (2011), 1594–1615 | MR | Zbl

[6] Sumin M.I., “Regulyarizovannye printsip Lagranzha i printsip maksimuma Pontryagina v optimalnom upravlenii i obratnykh zadachakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:1 (2019), 279–296 | DOI | MR

[7] Vasilev F.P., Metody optimizatsii, v 2-kh kn., MTsNMO, Moskva, 2011, 1056 pp.

[8] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986, 288 pp.

[9] Sumin M.I., “Parametricheskaya dvoistvennaya regulyarizatsiya dlya zadachi optimalnogo upravleniya s potochechnymi fazovymi ogranicheniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 49:12 (2009), 2083–2102 | MR

[10] Sumin M.I., “Regulyarizatsiya printsipa maksimuma Pontryagina v vypukloi zadache optimalnogo granichnogo upravleniya dlya parabolicheskogo uravneniya s operatornym ogranicheniem-ravenstvom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 27:2 (2021), 221–237 | DOI | MR

[11] Sumin M.I., “Ustoichivaya sekventsialnaya teorema Kuna - Takkera v iteratsionnoi forme ili regulyarizovannyi algoritm Udzavy v regulyarnoi zadache nelineinogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 55:6 (2015), 947–977 | DOI | Zbl

[12] Loewen P.D., Optimal control via nonsmooth analysis, CRM Proc. Lecture Notes, 2, AMS, Providence, RI, 1993, 153 pp. | DOI | MR | Zbl

[13] Clarke F.H., Ledyaev Yu.S., Stern R.J., Wolenski P.R., Nonsmooth analysis and control theory, Graduate Texts in Math., 178, Springer-Verlag, NY, 1998, 278 pp. | DOI | MR | Zbl

[14] Mordukhovich B.S., Variational analysis and generalized differentiation, v. I, Basic Theory, Springer, Berlin, 2006, 579 pp. | DOI | MR

[15] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR

[16] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp.

[17] Plotnikov V.I., “Teoremy edinstvennosti, suschestvovaniya i apriornye svoistva obobschennykh reshenii”, Dokl. AN SSSR, 165:1 (1965), 33–35 | Zbl

[18] Casas E., Raymond J.-P., Zidani H., “Pontryagin's principle for local solutions of control problems with mixed control-state constraints”, SIAM J. Control Optim., 39:4 (2000), 1182–1203 | DOI | MR | Zbl

[19] Danford N., Shvarts Dzh., Lineinye operatory, v. 1, Obschaya teoriya, IL, M., 1962, 896 pp.

[20] Smirnov V.I., Kurs vysshei matematiki, v. 5, GIFML, M., 1959, 656 pp. | MR

[21] Trenogin V.A., Funktsionalnyi analiz, Nauka, Moskva, 1980, 496 pp. | MR

[22] Minu M., Matematicheskoe programmirovanie. Teoriya i algoritmy, Nauka, M., 1990, 488 pp.

[23] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987, 400 pp. | MR

[24] Golshtein E.G., Tretyakov N.V., Modifitsirovannye funktsii Lagranzha. Teoriya i metody optimizatsii, Nauka, M., 1989, 399 pp. | MR