Polynomials least deviating from zero with a constraint on the location of roots
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 166-175
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider Chebyshev's problem on polynomials least deviating from zero on a compact set $K$ with a constraint on the location of their roots. More exactly, the problem is considered on the set $\mathcal{P}_n(G)$ of polynomials of degree $n$ that have unit leading coefficient and do not vanish on an open set $G$. An exact solution is obtained for $K=[-1, 1]$ and $G=\{z\in\mathbb{C}\,:\, |z|$, $R\ge \varrho_n$, where $\varrho_n$ is a number such that $\varrho_n^2\le (\sqrt{5}-1)/2$. In the case ${\rm Conv}\,K \subset \overline{G}$, the problem is reduced to similar problems for the set of algebraic polynomials all of whose roots lie on the boundary $\partial G$ of the set $G$. The notion of Chebyshev constant $\tau(K, G)$ of a compact set $K$ with respect to a compact set $G$ is introduced, and two-sided estimates are found for $\tau(K, G)$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Chebyshev polynomial of a compact set, Chebyshev constant of a compact set; constraints on the roots of a polynomial.
                    
                  
                
                
                @article{TIMM_2022_28_3_a12,
     author = {A. E. Pestovskaya},
     title = {Polynomials least deviating from zero with a constraint on the location of roots},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {166--175},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a12/}
}
                      
                      
                    TY - JOUR AU - A. E. Pestovskaya TI - Polynomials least deviating from zero with a constraint on the location of roots JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 166 EP - 175 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a12/ LA - ru ID - TIMM_2022_28_3_a12 ER -
A. E. Pestovskaya. Polynomials least deviating from zero with a constraint on the location of roots. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 166-175. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a12/
