Polynomials least deviating from zero with a constraint on the location of roots
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 166-175 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider Chebyshev's problem on polynomials least deviating from zero on a compact set $K$ with a constraint on the location of their roots. More exactly, the problem is considered on the set $\mathcal{P}_n(G)$ of polynomials of degree $n$ that have unit leading coefficient and do not vanish on an open set $G$. An exact solution is obtained for $K=[-1, 1]$ and $G=\{z\in\mathbb{C}\,:\, |z|$, $R\ge \varrho_n$, where $\varrho_n$ is a number such that $\varrho_n^2\le (\sqrt{5}-1)/2$. In the case ${\rm Conv}\,K \subset \overline{G}$, the problem is reduced to similar problems for the set of algebraic polynomials all of whose roots lie on the boundary $\partial G$ of the set $G$. The notion of Chebyshev constant $\tau(K, G)$ of a compact set $K$ with respect to a compact set $G$ is introduced, and two-sided estimates are found for $\tau(K, G)$.
Keywords: Chebyshev polynomial of a compact set, Chebyshev constant of a compact set; constraints on the roots of a polynomial.
@article{TIMM_2022_28_3_a12,
     author = {A. E. Pestovskaya},
     title = {Polynomials least deviating from zero with a constraint on the location of roots},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {166--175},
     year = {2022},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a12/}
}
TY  - JOUR
AU  - A. E. Pestovskaya
TI  - Polynomials least deviating from zero with a constraint on the location of roots
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 166
EP  - 175
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a12/
LA  - ru
ID  - TIMM_2022_28_3_a12
ER  - 
%0 Journal Article
%A A. E. Pestovskaya
%T Polynomials least deviating from zero with a constraint on the location of roots
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 166-175
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a12/
%G ru
%F TIMM_2022_28_3_a12
A. E. Pestovskaya. Polynomials least deviating from zero with a constraint on the location of roots. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 166-175. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a12/

[1] Chebyshev P.L., “Teoriya mekhanizmov, izvestnykh pod nazvaniem parallelogrammov”, Polnoe sobranie sochinenii P. L. Chebysheva, v 5 t., v. 2, Matematicheskii analiz, AN SSSR, M.; L., 1947, 23–51 | MR

[2] Goluzin G.M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, uch. pos., Nauka GITTL, M.; L., 1952, 628 pp. | MR

[3] Milovanović G.V., Mitrinović D.S., Rassias T.M., Topics in polynomials: Extremal problems, inequalities, zeros, World Scientific Publ. Comp., Singapore, 1994, 821 pp. | MR | Zbl

[4] Fischer B., “Chebyshev polynomials for disjoint compact sets”, Constr. Approx., 8:3 (1992), 309–329 | DOI | MR | Zbl

[5] Peherstorfer F., “Minimal polynomials for the compact sets of the complex plane”, Constr. Approx., 12:4 (1996), 481–488 | DOI | MR | Zbl

[6] Bairamov E.B., “Mnogochleny, naimenee uklonyayuschiesya ot nulya na kvadrate kompleksnoi ploskosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:3 (2018), 5–15 | DOI

[7] Borodin P.A., “Ob odnom uslovii na mnogochlen, dostatochnom dlya minimalnosti ego normy na zadannom kompakte”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2006, no. 4, 14–18 | Zbl

[8] Smirnov V.I., Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.; L., 1964, 438 pp. | MR

[9] Turán P., “Über die Ableitung von Polynomen”, Compositio Mathematica, 7 (1939), 89–95 | MR

[10] Glazyrina P.Yu., Révész Sz.Gy., “Turán type oscillation inequalities in $L_q$ norm on the boundary of convex domains”, Math. Inequal. Appl., 20:1 (2017), 149–180 | DOI | MR | Zbl

[11] Glazyrina P.Yu., Reves S.D., “Neravenstva Turana - Ereda, obratnye k neravenstvu Markova, dlya $L_q$-normy po granitse ploskoi vypukloi oblasti”, Tr. MIAN, 303 (2018), 87–115 | Zbl

[12] Lax P.D., “Proof of the conjecture of P. Erdos on the derivative of a polynomial”, Bull. Amer. Math. Soc., 50:8 (1944), 509–513 | DOI | MR | Zbl

[13] Akopyan R.R., “Certain extremal problems for algebraic polynomials which do not vanish in a disk”, East J. Approx., 9:2 (2003), 139–150 | MR | Zbl

[14] De Bruyn N.G., “Inequalities concerning polynomials in the complex domain”, Nederl. Akad. Watensh. Proc., 50 (1947), 1265–1272 | MR

[15] Rahman Q.I. and Schmeisser G., “$L^p$ inequalities for polynomials”, J. Approx. Theory, 53:1 (1988), 26–33 | DOI | MR

[16] Arestov V.V., “Integral inequalities for algebraic polynomials with a restriction on their zeros”, Anal. Math., 17:1 (1991), 11–20 | DOI | MR | Zbl

[17] Malik M.A., “On the derivative of a polynomial”, J. London. Math. Soc., s2-1:1 (1969), 57–60 | DOI | MR | Zbl

[18] Akopyan R.R., “Turan's inequality in H2 for algebraic polynomials with restrictions to their zeros”, East J. Approx., 6:1 (2000), 103–124 | MR | Zbl

[19] Erdélyi T., “Markov-type inequalities for constrained polynomials with complex coefficients”, Illinois J. Math., 42:4 (1998), 544–563 | DOI | MR | Zbl