Polynomials least deviating from zero with a constraint on the location of roots
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 166-175

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Chebyshev's problem on polynomials least deviating from zero on a compact set $K$ with a constraint on the location of their roots. More exactly, the problem is considered on the set $\mathcal{P}_n(G)$ of polynomials of degree $n$ that have unit leading coefficient and do not vanish on an open set $G$. An exact solution is obtained for $K=[-1, 1]$ and $G=\{z\in\mathbb{C}\,:\, |z|$, $R\ge \varrho_n$, where $\varrho_n$ is a number such that $\varrho_n^2\le (\sqrt{5}-1)/2$. In the case ${\rm Conv}\,K \subset \overline{G}$, the problem is reduced to similar problems for the set of algebraic polynomials all of whose roots lie on the boundary $\partial G$ of the set $G$. The notion of Chebyshev constant $\tau(K, G)$ of a compact set $K$ with respect to a compact set $G$ is introduced, and two-sided estimates are found for $\tau(K, G)$.
Keywords: Chebyshev polynomial of a compact set, Chebyshev constant of a compact set; constraints on the roots of a polynomial.
@article{TIMM_2022_28_3_a12,
     author = {A. E. Pestovskaya},
     title = {Polynomials least deviating from zero with a constraint on the location of roots},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {166--175},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a12/}
}
TY  - JOUR
AU  - A. E. Pestovskaya
TI  - Polynomials least deviating from zero with a constraint on the location of roots
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 166
EP  - 175
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a12/
LA  - ru
ID  - TIMM_2022_28_3_a12
ER  - 
%0 Journal Article
%A A. E. Pestovskaya
%T Polynomials least deviating from zero with a constraint on the location of roots
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 166-175
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a12/
%G ru
%F TIMM_2022_28_3_a12
A. E. Pestovskaya. Polynomials least deviating from zero with a constraint on the location of roots. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 166-175. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a12/