@article{TIMM_2022_28_3_a12,
author = {A. E. Pestovskaya},
title = {Polynomials least deviating from zero with a constraint on the location of roots},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {166--175},
year = {2022},
volume = {28},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a12/}
}
A. E. Pestovskaya. Polynomials least deviating from zero with a constraint on the location of roots. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 166-175. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a12/
[1] Chebyshev P.L., “Teoriya mekhanizmov, izvestnykh pod nazvaniem parallelogrammov”, Polnoe sobranie sochinenii P. L. Chebysheva, v 5 t., v. 2, Matematicheskii analiz, AN SSSR, M.; L., 1947, 23–51 | MR
[2] Goluzin G.M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, uch. pos., Nauka GITTL, M.; L., 1952, 628 pp. | MR
[3] Milovanović G.V., Mitrinović D.S., Rassias T.M., Topics in polynomials: Extremal problems, inequalities, zeros, World Scientific Publ. Comp., Singapore, 1994, 821 pp. | MR | Zbl
[4] Fischer B., “Chebyshev polynomials for disjoint compact sets”, Constr. Approx., 8:3 (1992), 309–329 | DOI | MR | Zbl
[5] Peherstorfer F., “Minimal polynomials for the compact sets of the complex plane”, Constr. Approx., 12:4 (1996), 481–488 | DOI | MR | Zbl
[6] Bairamov E.B., “Mnogochleny, naimenee uklonyayuschiesya ot nulya na kvadrate kompleksnoi ploskosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:3 (2018), 5–15 | DOI
[7] Borodin P.A., “Ob odnom uslovii na mnogochlen, dostatochnom dlya minimalnosti ego normy na zadannom kompakte”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2006, no. 4, 14–18 | Zbl
[8] Smirnov V.I., Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.; L., 1964, 438 pp. | MR
[9] Turán P., “Über die Ableitung von Polynomen”, Compositio Mathematica, 7 (1939), 89–95 | MR
[10] Glazyrina P.Yu., Révész Sz.Gy., “Turán type oscillation inequalities in $L_q$ norm on the boundary of convex domains”, Math. Inequal. Appl., 20:1 (2017), 149–180 | DOI | MR | Zbl
[11] Glazyrina P.Yu., Reves S.D., “Neravenstva Turana - Ereda, obratnye k neravenstvu Markova, dlya $L_q$-normy po granitse ploskoi vypukloi oblasti”, Tr. MIAN, 303 (2018), 87–115 | Zbl
[12] Lax P.D., “Proof of the conjecture of P. Erdos on the derivative of a polynomial”, Bull. Amer. Math. Soc., 50:8 (1944), 509–513 | DOI | MR | Zbl
[13] Akopyan R.R., “Certain extremal problems for algebraic polynomials which do not vanish in a disk”, East J. Approx., 9:2 (2003), 139–150 | MR | Zbl
[14] De Bruyn N.G., “Inequalities concerning polynomials in the complex domain”, Nederl. Akad. Watensh. Proc., 50 (1947), 1265–1272 | MR
[15] Rahman Q.I. and Schmeisser G., “$L^p$ inequalities for polynomials”, J. Approx. Theory, 53:1 (1988), 26–33 | DOI | MR
[16] Arestov V.V., “Integral inequalities for algebraic polynomials with a restriction on their zeros”, Anal. Math., 17:1 (1991), 11–20 | DOI | MR | Zbl
[17] Malik M.A., “On the derivative of a polynomial”, J. London. Math. Soc., s2-1:1 (1969), 57–60 | DOI | MR | Zbl
[18] Akopyan R.R., “Turan's inequality in H2 for algebraic polynomials with restrictions to their zeros”, East J. Approx., 6:1 (2000), 103–124 | MR | Zbl
[19] Erdélyi T., “Markov-type inequalities for constrained polynomials with complex coefficients”, Illinois J. Math., 42:4 (1998), 544–563 | DOI | MR | Zbl