Estimates for the number of large composition factors in the restrictions of representations of special linear groups on subsystem subgroups of type $A_{2}$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 155-165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

One of the main problems of representation theory is the description of the restrictions of irreducible representations of algebraic groups to subgroups, i.e., of the branching rules for representations. H. Weyl and I. Schur obtained the classical branching rules that describe the restrictions of representations of classical algebraic groups of rank $r$ to a naturally embedded classical subgroup of rank $r$ or $r-1$ in the characteristic $0$. In a positive characteristic, obtaining such rules in explicit form in the nearest future is unlikely. Therefore it is reasonable to develop methods for studying the modular representations, which do not require the knowledge of the characters. One of the directions of such studies is finding asymptotic analogs of branching rules to subgroups of small rank. Earlier we described the restrictions of modular representations of algebraic groups to subgroups of type $A_1$. In the present paper we study the restrictions of irreducible representations of the special linear group over an algebraically closed field of positive characteristic $p$ to subsystem subgroups of type $A_2$. An estimate is obtained for the number of factors that are large with respect to the subgroup for representations of groups of rank 3 and 4.
Keywords: algebraic groups, special linear groups, modular representations, restrictions, composition factors.
@article{TIMM_2022_28_3_a11,
     author = {A. A. Osinovskaya},
     title = {Estimates for the number of large composition factors in the restrictions of representations of special linear groups on subsystem subgroups of type $A_{2}$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {155--165},
     year = {2022},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a11/}
}
TY  - JOUR
AU  - A. A. Osinovskaya
TI  - Estimates for the number of large composition factors in the restrictions of representations of special linear groups on subsystem subgroups of type $A_{2}$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 155
EP  - 165
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a11/
LA  - ru
ID  - TIMM_2022_28_3_a11
ER  - 
%0 Journal Article
%A A. A. Osinovskaya
%T Estimates for the number of large composition factors in the restrictions of representations of special linear groups on subsystem subgroups of type $A_{2}$
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 155-165
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a11/
%G ru
%F TIMM_2022_28_3_a11
A. A. Osinovskaya. Estimates for the number of large composition factors in the restrictions of representations of special linear groups on subsystem subgroups of type $A_{2}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 3, pp. 155-165. http://geodesic.mathdoc.fr/item/TIMM_2022_28_3_a11/

[1] Andersen H.H., Jantzen J.C., Soergel W., Representations of quantum groups at a pth root of unity and of semisimple groups in characteristic p: independence of p, Astérisque, 220, Paris, 1994, 321 pp. | DOI | MR

[2] Fiebig P., “An upper bound on the exceptional characteristics for Lusztig's character formula”, J. Reine Angew. Math., 673 (2012), 1–31 | DOI | MR | Zbl

[3] Shchigolev V., “Weyl submodules in restrictions of simple modules”, J. Algebra, 321:5 (2009), 1453–1462 | DOI | MR | Zbl

[4] Osinovskaya A.A., “Restrictions of irreducible representations of classical algebraic groups to root $A_1$-subgroups”, Commun. in Algebra, 31:5 (2003), 2357–2379 | DOI | MR | Zbl

[5] Osinovskaya A.A., “Ogranicheniya predstavlenii spetsialnoi lineinoi gruppy na podsistemnye podgruppy tipa $A_2$”, Zapiski nauchnykh seminarov POMI, 455 (2017), 130–153

[6] Osinovskaya A.A., Suprunenko I.D., “On the Jordan block structure of images of some unipotent elements in modular irreducible representations of the classical algebraic groups”, J. Algebra, 273:2 (2004), 586–600 | DOI | MR | Zbl

[7] Osinovskaya A.A., “On the restrictions of modular irreducible representations of algebraic groups of type $A_n$ to naturally embedded subgroups of type $A_2$”, J. Group Theory, 8:1 (2005), 43–92 | DOI | MR | Zbl

[8] Jantzen J.C., Representations of algebraic groups, Ser. Math. Surveys and Monogr., 107, 2nd ed., Americ. Math. Soc., Providence, 2003, 576 pp. | MR | Zbl

[9] Zhelobenko D.P., Kompaktnye gruppy Li i ikh predstavleniya, 2-e izdanie, dopolnennoe, MTsNMO, M., 2007, 552 pp.