Hilbert's basis theorem for a semiring of skew polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 56-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Semirings of skew polynomials are studied. Such semirings are generalizations of both polynomial semirings and skew polynomial rings. Let $\varphi$ be an endomorphism of a semiring $S$. The left semiring of skew polynomials over $S$ is the set of polynomials of the form $f=a_0+a_1x+\ldots +a_kx^k$, $a_i\in S$, with the usual addition and the multiplication given by the rule $xa=\varphi (a)x$. It is known that the semiring of polynomials over a Noetherian semiring does not have to be Noetherian. In 1976, L. Dale introduced the notion of monic ideal of a polynomial semiring $S[x]$ over a commutative semiring, i.e., of an ideal that together with any its polynomial $f=\ldots+ax^k+\ldots$ contains each monomial $ax^k$. It was shown that the Noetherian property of a semiring $S$ implies the ascending chain condition for the monic ideals from $S[x]$. We study the monic ideals of the semiring of skew polynomials $S[x,\varphi]$. To describe them, we define $\varphi$-chains of coefficient sets of ideals from the semiring $S[x,\varphi]$. The main result of the paper is the following fact: if $\varphi$ is an automorphism, then the semiring $S$ is left (right) Noetherian if and only if $S[x,\varphi]$ satisfies the ascending chain condition for the left (right) monic ideals. Examples are given showing that the injectivity of the endomorphism $\varphi$ is not sufficient for the validity of the formulated result.
Keywords: semiring of skew polynomials, monic ideal, Hilbert's basis theorem.
Mots-clés : $\varphi$-chain of coefficient sets
@article{TIMM_2022_28_2_a3,
     author = {M. V. Babenko and V. V. Chermnykh},
     title = {Hilbert's basis theorem for a semiring of skew polynomials},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {56--65},
     year = {2022},
     volume = {28},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a3/}
}
TY  - JOUR
AU  - M. V. Babenko
AU  - V. V. Chermnykh
TI  - Hilbert's basis theorem for a semiring of skew polynomials
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 56
EP  - 65
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a3/
LA  - ru
ID  - TIMM_2022_28_2_a3
ER  - 
%0 Journal Article
%A M. V. Babenko
%A V. V. Chermnykh
%T Hilbert's basis theorem for a semiring of skew polynomials
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 56-65
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a3/
%G ru
%F TIMM_2022_28_2_a3
M. V. Babenko; V. V. Chermnykh. Hilbert's basis theorem for a semiring of skew polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 56-65. http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a3/

[1] Ore O., “Theory of non-commutative polynomials”, Ann. Math., 2 (34):3 (1933), 480–508 | DOI | MR | Zbl

[2] Hilbert D.A., Grundlagen der Geometrie, Teubner, Leipzig, 1899, 92 pp. | Zbl

[3] Gooderl K.R., Warfield R.B., An introduction to noncommutative Noetherian rings, Cambridge Univ. Press, Cambridge, 2004, 370 pp. | DOI | MR

[4] McConnell J.C., Robson J.C., Noncommutative Noetherian rings, Graduate Studes in Math., 30, 2000, 636 pp. | DOI | MR

[5] Dale L., “Monic and monic free ideals in polynomial semiring”, Proc. Amer. Math. Soc., 56 (1976), 45–50 | DOI | MR | Zbl

[6] Dale L., “The $k$-closure of monic and monic free ideals in a polynomial semiring”, Proc. Amer. Math. Soc., 64:2 (1977), 219–226 | DOI | MR | Zbl

[7] Babenko M.V., “Pirsovskie sloi polukolets s nekotorymi usloviyami konechnosti”, Vestn. Syktyvkar. un-ta. Ser. 1: Matematika. Mekhanika. Informatika, 2021, no. 3 (40), 4–20 | DOI

[8] Vechtomov E.M., Chermnykh V.V., “Osnovnye napravleniya razvitiya teorii polukolets”, Vestn. Syktyvkar. un-ta. Ser. 1: Matematika. Mekhanika. Informatika, 2021, no. 4 (41), 4–40 | DOI

[9] Babenko M.V., Chermnykh V.V., “O polukoltse kosykh mnogochlenov nad polukoltsom Bezu”, Mat. zametki, 111:3 (2022), 323–338 | DOI | Zbl

[10] Tuganbaev A.A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009, 472 pp.

[11] Golan J.S., Semirings and their applications, Kluwer Acad. Publ., Dordrecht, 1999 | DOI | MR | Zbl

[12] Allen P. J., Dale L., “Ideal theory in the semiring $Z^+$”, Publ. Math. Debrecen, 22:3–4 (1975), 219–224 | MR | Zbl

[13] Vechtomov E.M., Lubyagina E.N., Chermnykh V.V., Elementy teorii polukolets, Raduga-PRESS, Kirov, 2012, 228 pp.