Hilbert's basis theorem for a semiring of skew polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 56-65

Voir la notice de l'article provenant de la source Math-Net.Ru

Semirings of skew polynomials are studied. Such semirings are generalizations of both polynomial semirings and skew polynomial rings. Let $\varphi$ be an endomorphism of a semiring $S$. The left semiring of skew polynomials over $S$ is the set of polynomials of the form $f=a_0+a_1x+\ldots +a_kx^k$, $a_i\in S$, with the usual addition and the multiplication given by the rule $xa=\varphi (a)x$. It is known that the semiring of polynomials over a Noetherian semiring does not have to be Noetherian. In 1976, L. Dale introduced the notion of monic ideal of a polynomial semiring $S[x]$ over a commutative semiring, i.e., of an ideal that together with any its polynomial $f=\ldots+ax^k+\ldots$ contains each monomial $ax^k$. It was shown that the Noetherian property of a semiring $S$ implies the ascending chain condition for the monic ideals from $S[x]$. We study the monic ideals of the semiring of skew polynomials $S[x,\varphi]$. To describe them, we define $\varphi$-chains of coefficient sets of ideals from the semiring $S[x,\varphi]$. The main result of the paper is the following fact: if $\varphi$ is an automorphism, then the semiring $S$ is left (right) Noetherian if and only if $S[x,\varphi]$ satisfies the ascending chain condition for the left (right) monic ideals. Examples are given showing that the injectivity of the endomorphism $\varphi$ is not sufficient for the validity of the formulated result.
Keywords: semiring of skew polynomials, monic ideal, Hilbert's basis theorem.
Mots-clés : $\varphi$-chain of coefficient sets
@article{TIMM_2022_28_2_a3,
     author = {M. V. Babenko and V. V. Chermnykh},
     title = {Hilbert's basis theorem for a semiring of skew polynomials},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {56--65},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a3/}
}
TY  - JOUR
AU  - M. V. Babenko
AU  - V. V. Chermnykh
TI  - Hilbert's basis theorem for a semiring of skew polynomials
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 56
EP  - 65
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a3/
LA  - ru
ID  - TIMM_2022_28_2_a3
ER  - 
%0 Journal Article
%A M. V. Babenko
%A V. V. Chermnykh
%T Hilbert's basis theorem for a semiring of skew polynomials
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 56-65
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a3/
%G ru
%F TIMM_2022_28_2_a3
M. V. Babenko; V. V. Chermnykh. Hilbert's basis theorem for a semiring of skew polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 56-65. http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a3/