Voir la notice du chapitre de livre
Mots-clés : $Q$-polynomial graph.
@article{TIMM_2022_28_2_a13,
author = {A. A. Makhnev and I. N. Belousov and M. P. Golubyatnikov},
title = {On $Q$-polynomial {Shilla} graphs with $b = 4$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {176--186},
year = {2022},
volume = {28},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a13/}
}
TY - JOUR AU - A. A. Makhnev AU - I. N. Belousov AU - M. P. Golubyatnikov TI - On $Q$-polynomial Shilla graphs with $b = 4$ JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 176 EP - 186 VL - 28 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a13/ LA - ru ID - TIMM_2022_28_2_a13 ER -
A. A. Makhnev; I. N. Belousov; M. P. Golubyatnikov. On $Q$-polynomial Shilla graphs with $b = 4$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 176-186. http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a13/
[1] Koolen J.H., Park J., “Shilla distance-regular graphs”, Europ. J. Comb., 31:8 (2010), 2064–2073 | DOI | MR | Zbl
[2] Jurishic A., Vidali J., “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65 (2012), 29–47 | DOI | MR
[3] Belousov I.N., “Distantsionno regulyarnye grafy Shilla s $b_2 = sc_2$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:3 (2018), 16–26 | DOI
[4] Brouwer A.E., Sumaloj S., Worawannotai C., “The nonexistence of distance-regular graphs with intersection arrays $\{27,20,10;1,2,18\}$ and $\{36,28,4;1,2,24\}$”, Australasian J. Comb., 66:2 (2016), 330–332 | MR | Zbl
[5] Gavrilyuk A.L., Makhnev A.A., “Distance-regular graphs with intersection arrays $\{52,35,16; 1,4,28\}$ and $\{69,48,24;1,4,46\}$ do not exist”, Des. Codes Cryptogr., 65 (2012), 49–54 | DOI | MR | Zbl
[6] Belousov I.N., Makhnev A.A., “Distantsionno regulyarnyi graf s massivom peresechenii $\{105,72,24;1,12,70\}$ ne suschestvuet”, Sib. elektron. mat. izv., 16 (2019), 206–216 | DOI | MR | Zbl
[7] Belousov I.N., Makhnev A.A., “Distantsionno regulyarnye grafy s massivami peresechenii $\{42,30,12;1,6,28\}$ i $\{60,45,8;1,12,50\}$ ne suschestvuyut”, Sib. elektron. mat. izv., 15 (2018), 1506–1512 | DOI | MR | Zbl
[8] Bannai E., Ito T., Algebraic combinatorics I: Association schemes, Benjamin/Cummings, Menlo Park, 1984, 425 pp. | MR | Zbl
[9] Penttila T., Williford J., “New families of $Q$-polynomial association schemes”, J. Comb. Theory. Series A, 118:2 (2011), 502–509 | DOI | MR | Zbl
[10] Kurihara H., Nozaki H., “A characterization of $Q$-polynomial association schemes”, J. Comb. Theory. Series A, 119 (2012), 57–62 | DOI | MR | Zbl
[11] Suda S., “On $Q$-polynomial association schemes of small class”, Electron. J. Comb., 19:1 (2012), P68 | DOI | MR | Zbl
[12] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin; Heidelberg; NY, 1989, 495 pp. | MR | Zbl
[13] Vidali J., Kode v razdaljno regularnih grafih, Doctorska dissertacija, Univerza v Ljubljani, Ljubljana, 2013, 155 pp.
[14] Coolsaet K., “A distance regular graph with intersection array $(21,16,8;1,4,14)$ does not exist”, Europ. J. Comb., 26:5 (2005), 709–716 | DOI | MR | Zbl
[15] Makhnev A.A., Belousov I.N., Golubyatnikov M.P., Nirova M.S., “Tri beskonechnye serii grafov Shilla ne suschestvuyut”, Dokl. AN, 498:1 (2021), 45–50 | DOI | Zbl