On $Q$-polynomial Shilla graphs with $b = 4$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 176-186
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Shilla graphs introduced by J. H. Koolen and J. Park are considered. In the problem of finding feasible intersection arrays of Shilla graphs with a fixed parameter $b$, $Q$-polynomial graphs play an important role. For such graphs, the smallest eigenvalue is the minimum possible for the third nonprincipal eigenvalue. Intersection arrays of $Q$-polynomial graphs were found for $b=3$ in 2010 by Koolen and Park and for $b\in\{4,5\}$ in 2018 by Belousov. In particular, it is known that a $Q$-polynomial Shilla graph with $b=4$ has intersection array $\{104,81,27;1,9,78\}$, $\{156,120,36;1,12,117\}$, or $\{20(q-2),3(5q-9),2q;1,2q,15(q-2)\}$, where $q=6,9,18$. We prove that distance-regular graphs with intersection arrays $\{80,63,12;1,12,60\}$, $\{140,108,18;1,18,105\}$, and $\{320,243,36;1,36,240\}$ do not exist.
Keywords: Shilla graph, distance-regular graphs
Mots-clés : $Q$-polynomial graph.
@article{TIMM_2022_28_2_a13,
     author = {A. A. Makhnev and I. N. Belousov and M. P. Golubyatnikov},
     title = {On $Q$-polynomial {Shilla} graphs with $b = 4$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {176--186},
     year = {2022},
     volume = {28},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a13/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - I. N. Belousov
AU  - M. P. Golubyatnikov
TI  - On $Q$-polynomial Shilla graphs with $b = 4$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 176
EP  - 186
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a13/
LA  - ru
ID  - TIMM_2022_28_2_a13
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A I. N. Belousov
%A M. P. Golubyatnikov
%T On $Q$-polynomial Shilla graphs with $b = 4$
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 176-186
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a13/
%G ru
%F TIMM_2022_28_2_a13
A. A. Makhnev; I. N. Belousov; M. P. Golubyatnikov. On $Q$-polynomial Shilla graphs with $b = 4$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 176-186. http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a13/

[1] Koolen J.H., Park J., “Shilla distance-regular graphs”, Europ. J. Comb., 31:8 (2010), 2064–2073 | DOI | MR | Zbl

[2] Jurishic A., Vidali J., “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65 (2012), 29–47 | DOI | MR

[3] Belousov I.N., “Distantsionno regulyarnye grafy Shilla s $b_2 = sc_2$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:3 (2018), 16–26 | DOI

[4] Brouwer A.E., Sumaloj S., Worawannotai C., “The nonexistence of distance-regular graphs with intersection arrays $\{27,20,10;1,2,18\}$ and $\{36,28,4;1,2,24\}$”, Australasian J. Comb., 66:2 (2016), 330–332 | MR | Zbl

[5] Gavrilyuk A.L., Makhnev A.A., “Distance-regular graphs with intersection arrays $\{52,35,16; 1,4,28\}$ and $\{69,48,24;1,4,46\}$ do not exist”, Des. Codes Cryptogr., 65 (2012), 49–54 | DOI | MR | Zbl

[6] Belousov I.N., Makhnev A.A., “Distantsionno regulyarnyi graf s massivom peresechenii $\{105,72,24;1,12,70\}$ ne suschestvuet”, Sib. elektron. mat. izv., 16 (2019), 206–216 | DOI | MR | Zbl

[7] Belousov I.N., Makhnev A.A., “Distantsionno regulyarnye grafy s massivami peresechenii $\{42,30,12;1,6,28\}$ i $\{60,45,8;1,12,50\}$ ne suschestvuyut”, Sib. elektron. mat. izv., 15 (2018), 1506–1512 | DOI | MR | Zbl

[8] Bannai E., Ito T., Algebraic combinatorics I: Association schemes, Benjamin/Cummings, Menlo Park, 1984, 425 pp. | MR | Zbl

[9] Penttila T., Williford J., “New families of $Q$-polynomial association schemes”, J. Comb. Theory. Series A, 118:2 (2011), 502–509 | DOI | MR | Zbl

[10] Kurihara H., Nozaki H., “A characterization of $Q$-polynomial association schemes”, J. Comb. Theory. Series A, 119 (2012), 57–62 | DOI | MR | Zbl

[11] Suda S., “On $Q$-polynomial association schemes of small class”, Electron. J. Comb., 19:1 (2012), P68 | DOI | MR | Zbl

[12] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin; Heidelberg; NY, 1989, 495 pp. | MR | Zbl

[13] Vidali J., Kode v razdaljno regularnih grafih, Doctorska dissertacija, Univerza v Ljubljani, Ljubljana, 2013, 155 pp.

[14] Coolsaet K., “A distance regular graph with intersection array $(21,16,8;1,4,14)$ does not exist”, Europ. J. Comb., 26:5 (2005), 709–716 | DOI | MR | Zbl

[15] Makhnev A.A., Belousov I.N., Golubyatnikov M.P., Nirova M.S., “Tri beskonechnye serii grafov Shilla ne suschestvuyut”, Dokl. AN, 498:1 (2021), 45–50 | DOI | Zbl