On $Q$-polynomial Shilla graphs with $b = 4$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 176-186
Voir la notice de l'article provenant de la source Math-Net.Ru
Shilla graphs introduced by J. H. Koolen and J. Park are considered. In the problem of finding feasible intersection arrays of Shilla graphs with a fixed parameter $b$, $Q$-polynomial graphs play an important role. For such graphs, the smallest eigenvalue is the minimum possible for the third nonprincipal eigenvalue. Intersection arrays of $Q$-polynomial graphs were found for $b=3$ in 2010 by Koolen and Park and for $b\in\{4,5\}$ in 2018 by Belousov. In particular, it is known that a $Q$-polynomial Shilla graph with $b=4$ has intersection array $\{104,81,27;1,9,78\}$, $\{156,120,36;1,12,117\}$, or $\{20(q-2),3(5q-9),2q;1,2q,15(q-2)\}$, where $q=6,9,18$. We prove that distance-regular graphs with intersection arrays $\{80,63,12;1,12,60\}$, $\{140,108,18;1,18,105\}$, and $\{320,243,36;1,36,240\}$ do not exist.
Keywords:
Shilla graph, distance-regular graphs
Mots-clés : $Q$-polynomial graph.
Mots-clés : $Q$-polynomial graph.
@article{TIMM_2022_28_2_a13,
author = {A. A. Makhnev and I. N. Belousov and M. P. Golubyatnikov},
title = {On $Q$-polynomial {Shilla} graphs with $b = 4$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {176--186},
publisher = {mathdoc},
volume = {28},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a13/}
}
TY - JOUR AU - A. A. Makhnev AU - I. N. Belousov AU - M. P. Golubyatnikov TI - On $Q$-polynomial Shilla graphs with $b = 4$ JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 176 EP - 186 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a13/ LA - ru ID - TIMM_2022_28_2_a13 ER -
A. A. Makhnev; I. N. Belousov; M. P. Golubyatnikov. On $Q$-polynomial Shilla graphs with $b = 4$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 176-186. http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a13/