@article{TIMM_2022_28_1_a18,
author = {L. G. Shagalova},
title = {A continuous generalized solution of the {Hamilton-Jacobi} equation with a three-component {Hamiltonian}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {257--268},
year = {2022},
volume = {28},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a18/}
}
TY - JOUR AU - L. G. Shagalova TI - A continuous generalized solution of the Hamilton-Jacobi equation with a three-component Hamiltonian JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 257 EP - 268 VL - 28 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a18/ LA - ru ID - TIMM_2022_28_1_a18 ER -
L. G. Shagalova. A continuous generalized solution of the Hamilton-Jacobi equation with a three-component Hamiltonian. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 257-268. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a18/
[1] Kruzhkov S.N., “Obobschennye resheniya nelineinykh uravnenii pervogo poryadka so mnogimi nezavisimymi peremennymi, I”, Mat. sb., 70(112):3 (1966), 394–415 | Zbl
[2] Crandall M.G., Lions P.L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl
[3] Subbotin A.I., Minimaksnye neravenstva i uravneniya Gamiltona–Yakobi, Nauka, M., 1991, 216 pp.
[4] Subbotin A.I., Generalized solutions of first order PDEs: The dynamical optimization perspective, Birkhäuser, Boston, 1995, 312 pp. | DOI | MR
[5] Capuzzo-Dolcetta I., Lions P.-L., “Hamilton-Jacobi equations with state constraints”, Trans. Amer. Math. Soc., 318:2 (1990), 643–683 | DOI | MR | Zbl
[6] Yokoyama E., Giga Y., Rybka P., “A microscopic time scale approximation to the behavior of the local slope on the faceted surface under a nonuniformity in supersaturation”, Physica D: Nonlinear Phenomena, 237:22 (2008), 2845–2855 | DOI | MR | Zbl
[7] Saakian D. B., Rozanova O., Akmetzhanov A., “Dynamics of the Eigen and the Crow–Kimura models for molecular evolution”, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 78:4 (2008), 041908 | DOI | MR
[8] Subbotina N. N., Shagalova L. G., “O reshenii zadachi Koshi dlya uravneniya Gamiltona–Yakobi s fazovymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:2 (2011), 191–208 | MR
[9] Shagalova L. G., “Nepreryvnoe obobschennoe reshenie uravneniya Gamiltona–Yakobi s nekoertsitivnym gamiltonianom”, Itogi nauki i tekhniki. Ser. Sovremennaya matematika i ee prilozheniya. Tematicheskie. obzory, 186 (2020), 144–151
[10] Clarke F. H., “Tonelli's regurarity theory in the calculus of variations: Recent progress”, Optimization and Related Fields, Lecture Notes in Math, 1190, 1986, 163–179 | DOI | MR | Zbl
[11] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964, 832 pp.
[12] Subbotina N.N., “The method of characteristics for Hamilton–Jacobi equation and its applications in dynamical optimization”, Modern Mathematics and its Applications, 20 (2004), 2955–3091 | MR
[13] Mirica S., “Generalized solutions by Cauchy's method of characteristics”, Rendiconti del Seminario Matematico della Universita di Padova, 77 (1987), 317–350 | MR | Zbl
[14] Shagalova L., “A viscosity solution of the Hamilton-Jacobi equation with exponential dependence of Hamiltonian on the momentum”, Cybernetics and Physics, 10:4 (2021), 273–276 | DOI
[15] Bardi M., Evans L. C., “On Hopf's formulas for solutions of Hamilton-Jacobi equations”, Nonlinear Analysis: Theory, Methods Applications, 8:11 (1984), 1373–1381 | DOI | MR | Zbl