A continuous generalized solution of the Hamilton-Jacobi equation with a three-component Hamiltonian
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 257-268 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Cauchy problem for the Hamilton–Jacobi equation of evolution type is studied in the case of one-dimensional state space. The domain in which the equation is considered is divided into three subdomains. In each of these subdomains, the Hamiltonian is continuous, and at their boundaries it suffers a discontinuity in the state variable. The Hamiltonian is convex in the impulse variable, and the dependence on this variable is exponential. We define a continuous generalized solution of the Cauchy problem with a discontinuous Hamiltonian on the basis of the viscous/minimax approach. The proof of the existence of such a generalized solution is constructive. First, a viscosity solution is constructed in the closure of the middle domain. Here, the coercivity of the Hamiltonian with respect to the impulse variable in the middle domain is essential. The solution is then continuously extended to the other two domains. The extensions are constructed by solving variational problems with movable ends based on the method of generalized characteristics. The uniqueness of the generalized solution is proved under the condition that the initial function is globally Lipschitz.
Keywords: Hamilton–Jacobi equation, discontinuous Hamiltonian, generalized solutions, viscosity solutions, method of generalized characteristics.
@article{TIMM_2022_28_1_a18,
     author = {L. G. Shagalova},
     title = {A continuous generalized solution of the {Hamilton-Jacobi} equation with a three-component {Hamiltonian}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {257--268},
     year = {2022},
     volume = {28},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a18/}
}
TY  - JOUR
AU  - L. G. Shagalova
TI  - A continuous generalized solution of the Hamilton-Jacobi equation with a three-component Hamiltonian
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 257
EP  - 268
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a18/
LA  - ru
ID  - TIMM_2022_28_1_a18
ER  - 
%0 Journal Article
%A L. G. Shagalova
%T A continuous generalized solution of the Hamilton-Jacobi equation with a three-component Hamiltonian
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 257-268
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a18/
%G ru
%F TIMM_2022_28_1_a18
L. G. Shagalova. A continuous generalized solution of the Hamilton-Jacobi equation with a three-component Hamiltonian. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 257-268. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a18/

[1] Kruzhkov S.N., “Obobschennye resheniya nelineinykh uravnenii pervogo poryadka so mnogimi nezavisimymi peremennymi, I”, Mat. sb., 70(112):3 (1966), 394–415 | Zbl

[2] Crandall M.G., Lions P.L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl

[3] Subbotin A.I., Minimaksnye neravenstva i uravneniya Gamiltona–Yakobi, Nauka, M., 1991, 216 pp.

[4] Subbotin A.I., Generalized solutions of first order PDEs: The dynamical optimization perspective, Birkhäuser, Boston, 1995, 312 pp. | DOI | MR

[5] Capuzzo-Dolcetta I., Lions P.-L., “Hamilton-Jacobi equations with state constraints”, Trans. Amer. Math. Soc., 318:2 (1990), 643–683 | DOI | MR | Zbl

[6] Yokoyama E., Giga Y., Rybka P., “A microscopic time scale approximation to the behavior of the local slope on the faceted surface under a nonuniformity in supersaturation”, Physica D: Nonlinear Phenomena, 237:22 (2008), 2845–2855 | DOI | MR | Zbl

[7] Saakian D. B., Rozanova O., Akmetzhanov A., “Dynamics of the Eigen and the Crow–Kimura models for molecular evolution”, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 78:4 (2008), 041908 | DOI | MR

[8] Subbotina N. N., Shagalova L. G., “O reshenii zadachi Koshi dlya uravneniya Gamiltona–Yakobi s fazovymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:2 (2011), 191–208 | MR

[9] Shagalova L. G., “Nepreryvnoe obobschennoe reshenie uravneniya Gamiltona–Yakobi s nekoertsitivnym gamiltonianom”, Itogi nauki i tekhniki. Ser. Sovremennaya matematika i ee prilozheniya. Tematicheskie. obzory, 186 (2020), 144–151

[10] Clarke F. H., “Tonelli's regurarity theory in the calculus of variations: Recent progress”, Optimization and Related Fields, Lecture Notes in Math, 1190, 1986, 163–179 | DOI | MR | Zbl

[11] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964, 832 pp.

[12] Subbotina N.N., “The method of characteristics for Hamilton–Jacobi equation and its applications in dynamical optimization”, Modern Mathematics and its Applications, 20 (2004), 2955–3091 | MR

[13] Mirica S., “Generalized solutions by Cauchy's method of characteristics”, Rendiconti del Seminario Matematico della Universita di Padova, 77 (1987), 317–350 | MR | Zbl

[14] Shagalova L., “A viscosity solution of the Hamilton-Jacobi equation with exponential dependence of Hamiltonian on the momentum”, Cybernetics and Physics, 10:4 (2021), 273–276 | DOI

[15] Bardi M., Evans L. C., “On Hopf's formulas for solutions of Hamilton-Jacobi equations”, Nonlinear Analysis: Theory, Methods Applications, 8:11 (1984), 1373–1381 | DOI | MR | Zbl