On periodic completely splittable groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 239-246 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study an infinite periodic group $G$ with involutions that coincides with the set-theoretic union of a collection of proper locally cyclic subgroups with trivial pairwise intersections. It is proved that if $G$ contains an elementary subgroup $E_8$, then either $G$ is locally finite (and its structure is described) or its subgroup $O_2(G)$ is elementary and strongly isolated in $G$. If $G$ has a finite element of order greater than 2 and the $2$-rank of $G$ is not $2$, then $G$ is locally finite, and its structure is described.
Keywords: periodic group, completely splittable group, $2$-rank of a group, strongly isolated subgroup, finite element.
@article{TIMM_2022_28_1_a16,
     author = {A. I. Sozutov},
     title = {On periodic completely splittable groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {239--246},
     year = {2022},
     volume = {28},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a16/}
}
TY  - JOUR
AU  - A. I. Sozutov
TI  - On periodic completely splittable groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 239
EP  - 246
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a16/
LA  - ru
ID  - TIMM_2022_28_1_a16
ER  - 
%0 Journal Article
%A A. I. Sozutov
%T On periodic completely splittable groups
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 239-246
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a16/
%G ru
%F TIMM_2022_28_1_a16
A. I. Sozutov. On periodic completely splittable groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 239-246. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a16/

[1] Kontorovich P.G., “Gruppy s bazisom rasschepleniya I”, Mat. sb., 12(54):1 (1943), 56–70 | Zbl

[2] Starostin A.I., “Rasschepleniya i tsentralizatory v teorii konechnykh grupp”, Mat. zametki. Doktorskie dissertatsii, 6:4 (1969), 499–511, Avtoreferat dis. ...d-r fiz.-mat. nauk, 1968

[3] Busarkin V.M., Gorchakov Yu.M., Konechnye rasscheplyaemye gruppy, Nauka, M., 1968, 112 pp.

[4] Miller G.A., “Groups in which all the operators are contained in series of subgroups such that any two have only the identity in common”, Bull. Amer. Math. Soc., 12:9 (1906), 446–449 | DOI | MR | Zbl

[5] Young J.W., “On the partitions of a group and the rezulting classification”, Bull. Amer. Math. Soc., 33:4 (1927), 453–461 | DOI | MR | Zbl

[6] Jordan C., “Recherches sur les substitution”, Liov. Journ. Ser. 2, 17 (1872), 351–367

[7] Dickson L., Linear groups with an exposition of the Galois field theory, B.G.Teubner, Leipzig, 1901, 312 pp. | Zbl

[8] Frobenius G., “Über auflösbare Gruppen, IV”, Berl. Ber, 1901, 1216–1230 | Zbl

[9] Starostin A.I., “O gruppakh Frobeniusa”, Ukr. mat. zhurn., 23:5 (1971), 629–639 | MR | Zbl

[10] Kontorovich P.G., “O razlozhenii grupp v pryamuyu summu podgrupp.I”, Mat. sb., 5(47):2 (1939), 289–296 ; “О разложении групп в прямую сумму подгрупп.II”, Мат. сб., 7(49):1 (1940), 27–33

[11] Kontorovich P.G., “Gruppy s bazisom rasschepleniya. II”, Mat. sb., 19(61):2 (1946), 287–305 ; “Группы с базисом расщепления. III”, 22(64):1 (1948), 79–100 ; “Группы с базисом расщепления. IV”, 26(68):2 (1950), 311–320 | Zbl | Zbl

[12] Kontorovich P.G., Pekelis A.S., Starostin A.I., “Strukturnye voprosy teorii grupp”, Mat. zap. Ural. un-ta, 3:1 (1961), 3–50

[13] Starostin A.I., “Stroenie vpolne rasscheplyaemogo yadra lokalno konechnykh grupp”, Uch. zap. Ural. un-ta, 23:1 (1959), 29–34

[14] Starostin A.I., “Periodicheskie lokalno razreshimye vpolne rasscheplyaemye gruppy”, Izv. VUZov. Matematika, 2 (1960), 168–177 | MR | Zbl

[15] Busarkin V.M., Starostin A.I., “O rasscheplyaemykh lokalno konechnykh gruppakh”, Mat. sb., 62(104):3 (1963), 275–294 | MR | Zbl

[16] Starostin A.I., “Yadro rasschepleniya lokalno konechnykh grupp”, Mat. sb., 66(108):4 (1965), 551–567 | Zbl

[17] Suzuki M., “On the finite groups with a complete partition”, J. Math. Soc. Japan, 2:1–2 (1950), 165–185 | DOI | MR | Zbl

[18] Baer R., “Einfache Partitionen nicht-einfacher Gruppen”, Math. Z., 77:1 (1961), 1–37 | DOI | MR | Zbl

[19] Kegel O., “Lokal endliche Gruppen mit nicht-trivialer Partition”, Arch. Math., 13 (1962), 10–28 | DOI | MR | Zbl

[20] Gorchakov Yu.M., “O beskonechnykh gruppakh Frobeniusa”, Algebra i logika, 4:1 (1965), 15–29 | MR | Zbl

[21] Shunkov V.P., “O nekotorom obobschenii teoremy Frobeniusa na periodicheskie gruppy”, Algebra i logika, 6:3 (1967), 113–124 | MR

[22] Sozutov A.I., Shunkov V.P., “Ob odnom obobschenii teoremy Frobeniusa na beskonechnye gruppy”, Mat. sb., 100:4 (1976), 495–506 | MR | Zbl

[23] Sozutov A.I., “O stroenii neinvariantnogo mnozhitelya v nekotorykh gruppakh Frobeniusa”, Sib. mat. zhurn., 35:4 (1994), 893–901 | MR | Zbl

[24] Adyan S.I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975, 336 pp.

[25] Olshanskii A.Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989, 448 pp. | MR

[26] Adyan S.I., “Periodicheskie proizvedeniya grupp”, Tr. MIAN, 142 (1976), 3–21 | Zbl

[27] Olshanskii A.Yu., “Gruppy ogranichennogo perioda s podgruppami prostykh poryadkov”, Algebra i logika, 21:5 (1982), 553–618 | MR

[28] Mazurov V.D., Khukhro E.I., Nereshennye voprosy teorii grupp. Kourovskaya tetrad, 15-e izd., Novosib. gos. un-t, Novosibirsk, 2002, 172 pp. | MR

[29] Sozutov A.I., “O gruppakh s kvazitsiklicheskim tsentralizatorom involyutsii”, Sib. mat. zhurn., 57:5 (2016), 1127–1130 | MR | Zbl

[30] Sozutov A.I., “O gruppakh s konechnym engelevym elementom”, Algebra i logika, 58:3 (2019), 376–396 | DOI | MR | Zbl

[31] Sozutov A.I., Suchkov N.M., Suchkova N.G., Beskonechnye gruppy s involyutsiyami, Izd-vo Sibir. feder. un-ta, Krasnoyarsk, 2011, 149 pp.

[32] Popov A.M., Sozutov A.I., Shunkov V.P., Gruppy s sistemami frobeniusovykh podgrupp, Izd-vo Krasnoyar. gosud. tekhn. un-ta, Krasnoyarsk, 2004, 210 pp.