On periodic completely splittable groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 239-246

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an infinite periodic group $G$ with involutions that coincides with the set-theoretic union of a collection of proper locally cyclic subgroups with trivial pairwise intersections. It is proved that if $G$ contains an elementary subgroup $E_8$, then either $G$ is locally finite (and its structure is described) or its subgroup $O_2(G)$ is elementary and strongly isolated in $G$. If $G$ has a finite element of order greater than 2 and the $2$-rank of $G$ is not $2$, then $G$ is locally finite, and its structure is described.
Keywords: periodic group, completely splittable group, $2$-rank of a group, strongly isolated subgroup, finite element.
@article{TIMM_2022_28_1_a16,
     author = {A. I. Sozutov},
     title = {On periodic completely splittable groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {239--246},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a16/}
}
TY  - JOUR
AU  - A. I. Sozutov
TI  - On periodic completely splittable groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 239
EP  - 246
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a16/
LA  - ru
ID  - TIMM_2022_28_1_a16
ER  - 
%0 Journal Article
%A A. I. Sozutov
%T On periodic completely splittable groups
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 239-246
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a16/
%G ru
%F TIMM_2022_28_1_a16
A. I. Sozutov. On periodic completely splittable groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 239-246. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a16/