On the $\mathfrak{F}$-Norm of a Finite Group
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 232-238
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a finite group, and let $\mathfrak{F}$ be a nonempty formation. Then the intersection of the normalizers of the $\mathfrak{F}$-residuals of all subgroups of $G$ is called the $\mathfrak{F}$-norm of $G$ and is denoted by $N_{\mathfrak{F}}(G)$. A group $G$ is called $\mathfrak{F}$-critical if $G \not\in \mathfrak{F}$, but $U\in \mathfrak{F}$ for any proper subgroup $U$ of $G$. We say that a finite group $G$ is generalized $\mathfrak{F}$-critical if $G$ contains a normal subgroup $N$ such that $N\le \Phi (G)$ and the quotient group $G/N$ is $\mathfrak{F}$-critical. In this publication, we prove the following result: If $G$ does not belong to the nonempty hereditary formation $\mathfrak{F},$ then the $\mathfrak{F}$-norm $N_{\mathfrak{F}}(G)$ of $G$ coincides with the intersection of the normalizers of the $\mathfrak{F}$-residuals of all generalized $\mathfrak{F}$-critical subgroups of $G$. In particular$,$ the norm $N (G)$ of $G$ coincides with the intersection of the normalizers of all cyclic subgroups of $G$ of prime power order.
Keywords:
finite group, hereditary formation, $\mathfrak{F}$-residual of a group, $\mathfrak{F}$-norm of a group, generalized $\mathfrak{F}$-critical group.
@article{TIMM_2022_28_1_a15,
author = {V. N. Rizhik and I. N. Safonova and A. N. Skiba},
title = {On the $\mathfrak{F}${-Norm} of a {Finite} {Group}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {232--238},
publisher = {mathdoc},
volume = {28},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a15/}
}
TY - JOUR
AU - V. N. Rizhik
AU - I. N. Safonova
AU - A. N. Skiba
TI - On the $\mathfrak{F}$-Norm of a Finite Group
JO - Trudy Instituta matematiki i mehaniki
PY - 2022
SP - 232
EP - 238
VL - 28
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a15/
LA - ru
ID - TIMM_2022_28_1_a15
ER -
V. N. Rizhik; I. N. Safonova; A. N. Skiba. On the $\mathfrak{F}$-Norm of a Finite Group. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 232-238. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a15/