AT-groups that are not AT-subgroups: Transition from $AT_{\omega}$-groups to $AT_{\Omega}$-groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 218-231 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Periodic nonlocally finite (Burnside) groups of infinite period are studied. The first explicit example of such groups was proposed by S.V. Aleshin in 1972. His construction was generalized to AT-groups, i.e., tree automorphism groups. A number of known problems have been solved with the help of AT-groups. Up to now, in reality, only the class of $AT_{\omega}$-groups, i.e., the class of AT-groups over a sequence of cyclic groups of prime order, has been studied. In this paper, the class of $AT_{\Omega}$-groups, i.e., of AT-groups over a sequence of cyclic groups of arbitrary finite order, is studied. The difference between $AT_{\omega}$-groups and true $AT_{\Omega}$-groups was revealed by the solution of the Kourovka Problem 16.79. The study of the class of $AT_{\Omega}$-groups has allowed us to introduce a number of new notions. Now the $AT_{\omega}$-groups can be considered as elementary AT-groups by which the AT-groups over a sequence of periodic groups are saturated. We propose a strategy for studying such AT-groups and give promising directions of this kind of research.
Keywords: Burnside groups, residually finite group, finiteness conditions, AT-groups, trees, wreath product.
@article{TIMM_2022_28_1_a14,
     author = {A. V. Rozhkov},
     title = {AT-groups that are not {AT-subgroups:} {Transition} from $AT_{\omega}$-groups to $AT_{\Omega}$-groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {218--231},
     year = {2022},
     volume = {28},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a14/}
}
TY  - JOUR
AU  - A. V. Rozhkov
TI  - AT-groups that are not AT-subgroups: Transition from $AT_{\omega}$-groups to $AT_{\Omega}$-groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 218
EP  - 231
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a14/
LA  - ru
ID  - TIMM_2022_28_1_a14
ER  - 
%0 Journal Article
%A A. V. Rozhkov
%T AT-groups that are not AT-subgroups: Transition from $AT_{\omega}$-groups to $AT_{\Omega}$-groups
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 218-231
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a14/
%G ru
%F TIMM_2022_28_1_a14
A. V. Rozhkov. AT-groups that are not AT-subgroups: Transition from $AT_{\omega}$-groups to $AT_{\Omega}$-groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 218-231. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a14/

[1] Golod E.S., “O nil-algebrakh i finitno approksimiruemykh gruppakh”, Izv. AN SSSR. Ser. matematicheskaya, 28:2 (1964), 273–276

[2] Aleshin S.V., “Konechnye avtomaty i problema Bernsaida o periodicheskikh gruppakh”, Mat. zametki, 11:3 (1972), 319–328 | MR | Zbl

[3] Suschanskii V.I., “Periodicheskie p-gruppy podstanovok i neogranichennaya problema Bernsaida”, Dokl. AN SSSR, 247:3 (1979), 561–565 | MR

[4] Grigorchuk R.I., “K probleme Bernsaida o periodicheskikh gruppakh”, Funkts. analiz i ego prilozheniya, 14:1 (1980), 53–54 | MR | Zbl

[5] Gupta N., Sidki S., “Some infinite $p$-groups”, Algebra i logika, 22:5 (1983), 584–589 | MR | Zbl

[6] Merzlyakov Yu.I., “O beskonechnykh konechno-porozhdennykh periodicheskikh gruppakh”, Dokl. AN SSSR, 268:4 (1983), 803–805 | MR | Zbl

[7] Rozhkov A.V., “K teorii grupp aleshinskogo tipa”, Mat. zametki, 40:5 (1986), 572–589 | MR | Zbl

[8] Grigorchuk R.I., “Stepeni rosta konechno-porozhdennykh grupp i invariantnoe srednee”, Izv. AN SSSR. Ser. matematicheskaya, 48:5 (1984), 572–589

[9] Rozhkov A.V., Usloviya konechnosti v gruppakh avtomorfizmov derevev, dis. ...dok. fiz.-mat. nauk, Krasnoyarsk. gos. un-t, Krasnoyarsk, 1997, 230 pp.

[10] Nereshennye voprosy teorii grupp. Kourovskaya tetrad, Izd. 18-e, dopol., eds. V.D. Mazurov, E.I. Khukhro, Institut matematiki, Novosibirsk, 2014, 254 pp.

[11] Grigorchuk R.I., “Vetvyaschiesya gruppy”, Mat. zametki, 67:6 (2000), 852–858 | Zbl