Mots-clés : antipodal graph
@article{TIMM_2022_28_1_a12,
author = {A. A. Makhnev and D. V. Paduchikh},
title = {Inverse {Problems} in the {Class} of {Distance-Regular} {Graphs} of {Diameter~}$4$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {199--208},
year = {2022},
volume = {28},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a12/}
}
TY - JOUR AU - A. A. Makhnev AU - D. V. Paduchikh TI - Inverse Problems in the Class of Distance-Regular Graphs of Diameter $4$ JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 199 EP - 208 VL - 28 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a12/ LA - ru ID - TIMM_2022_28_1_a12 ER -
A. A. Makhnev; D. V. Paduchikh. Inverse Problems in the Class of Distance-Regular Graphs of Diameter $4$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 199-208. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a12/
[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin; Heidelberg; NY, 1989, 495 pp. | MR | Zbl
[2] Jurisic A., Koolen J., Terwilliger P., “Tight distance-regular graphs”, J. Algebr. Comb., 12 (2000), 163–197 | DOI | MR | Zbl
[3] Makhnev A. A., Nirova M. S., “Distantsionno regulyarnye grafy Shilla s $b_2=c_2$”, Mat. zametki, 103:4 (2018), 730–744 | DOI | Zbl
[4] Soicher L., “The uniqueness of a distance-regular graph with intersection array $\{32,27,8,1;1,4,27,32\}$ and related results”, Des. Codes Cryptogr., 84 (2017), 101–108 | DOI | MR | Zbl
[5] Gavrilyuk A. L., Makhnev A. A., “O grafakh Kreina bez treugolnikov”, Dokl. RAN, 403:6 (2005), 727–730 | MR | Zbl
[6] Makhnev A. A., “Graf Kreina $Kre(4)$ ne suschestvuet”, Dokl. RAN, 475:3 (2017), 251–253 | DOI | Zbl
[7] Makhnev A. A., Paduchikh D. V., “O silno regulyarnykh grafakh s sobstvennym znacheniem $\mu$ i ikh avtomorfizmakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:3 (2013), 207–214 | MR
[8] Vidali J., “Using symbolic computation to prove nonexistence of distance-regular graphs”, Electronic J. Sombinatorics, 25:4 (2018), 4.21 | DOI | MR | Zbl
[9] Gavrilyuk A. L., Makhnev A. A., Paduchikh D. V., “Distantsionno regulyarnye grafy, v kotorykh okrestnosti vershin izomorfny grafu Gevirttsa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:2 (2010), 35–47
[10] Jurishich A., Koolen J., “Classification of the $AT4(qs,q,q)$ family of distance-regular graphs”, J. Comb. Theory, 118:3 (2011), 842–852 | DOI | MR
[11] Bamberg J., etc., GAP 4, Package FinInG, 2018, 314 pp. URL: https://www.gap-system.org/Manuals/pkg/fining/doc/manual.pdf
[12] Efimov K. S., “Avtomorfizmy $AT4(4,4,2)$-grafa i otvechayuschikh emu silno regulyarnykh grafov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 23:4 (2017), 119–127