On the exponents of commutators from P. Hall's collection formula
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 182-198 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G$ be a group, and let $x,y \in G$. We find an explicit form of the exponents of some commutators from P. Hall's collection formula for the expression $(xy)^n$, $n \in \mathbb{N}$. The exponents for the series of commutators $[y,\!\!\ _ux,\!\!\ _vy]$ and $[[y,\!\!\ _ux],[y,\!\!\ _vx]]$ are found in the Hall form, i.e., in the form of integer-valued polynomials in $n$ with zero constant term, and also modulo $n$ when $n$ is a prime number. The exponents for the series of commutators $[[y,\!\!\ _{u}x,\!\!\ _{v}y],\!\!\ _{t_{1}}[y,\!\!\ _{u_1}x,\!\!\ _{v_1}y], \ldots,\!\!\ _{t_{h}}[y,\!\!\ _{u_h}x,\!\!\ _{v_h}y]]$ are found in the form of multiple combinatorial sums. As a consequence, we obtain an explicit form of Hall's collection formula in two cases: the group $G$ has solvability length 2, the commutator subgroup $G'$ has nilpotency class 2, and $y \in C_G(G')$. A collection formula for the expression $(xy)^n$ is obtained in an explicit form when the group $G$ has solvability length 3. To obtain these results we parameterize the uncollected part of the collection formula by the binary weight function. The results may be useful in solving problems in combinatorial group theory and in studying the regularity of finite $p$-groups.
Keywords: collection process, commutator.
Mots-clés : collection formula
@article{TIMM_2022_28_1_a11,
     author = {V. M. Leontiev},
     title = {On the exponents of commutators from {P.} {Hall's} collection formula},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {182--198},
     year = {2022},
     volume = {28},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a11/}
}
TY  - JOUR
AU  - V. M. Leontiev
TI  - On the exponents of commutators from P. Hall's collection formula
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 182
EP  - 198
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a11/
LA  - ru
ID  - TIMM_2022_28_1_a11
ER  - 
%0 Journal Article
%A V. M. Leontiev
%T On the exponents of commutators from P. Hall's collection formula
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 182-198
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a11/
%G ru
%F TIMM_2022_28_1_a11
V. M. Leontiev. On the exponents of commutators from P. Hall's collection formula. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 182-198. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a11/

[1] Hall P., “A contribution to the theory of groups of prime-power order”, Proc. Lond. Math. Soc., s2-36:1 (1934), 29–95 | DOI | MR

[2] Hall M., Jr., The theory of groups, The Macmillan Co., NY, 1959, 434 pp. | MR | Zbl

[3] Magnus W., Karras A., Solitar D., Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publ., Wiley, NY, 1966, 444 pp. | MR | Zbl

[4] Krause E.F., “On the collection process”, Proc. Amer. Math. Soc., 15:3 (1964), 497–504 | DOI | MR | Zbl

[5] Krause E.F., “Groups of exponent 8 satisfy the 14th Engel congruence”, Proc. Amer. Math. Soc., 15:3 (1964), 491–496 | DOI | MR | Zbl

[6] Skopin A.I., “O sobiratelnoi formule”, Zap. nauchn. sem. LOMI, 46, 1974, 59–63 | MR | Zbl

[7] Skopin A.I., “Tozhdestvo Yakobi i sobiratelnaya formula F. Kholla v transmetabelevykh gruppakh dvukh tipov”, Zap. nauchn. sem. LOMI, 175, 1989, 106–112

[8] Skopin A.I., “Graficheskoe postroenie sobiratelnoi formuly nekotorykh tipov grupp”, Zap. nauchn. sem. LOMI, 191, 1991, 140–151 | Zbl

[9] Skopin A.I., Teterin Yu.G., “Uskorenie algorifma postroeniya sobiratelnoi formuly F. Kholla”, Zap. nauchn. sem. POMI, 191 (1995), 106–112

[10] Leontev V.M., “Kombinatornye voprosy, svyazannye s sobiratelnym protsessom F. Kholla”, Sib. elektron. mat. izv., 17 (2020), 873–889 | DOI

[11] Kolesnikov S.G., Leontiev V.M., Egorychev G.P., “Two collection formulas”, J. Group Theory, 23:4 (2020), 607–628 | DOI | MR | Zbl

[12] Kolesnikov S.G., Leontev V.M., “Ob odnom neobkhodimom uslovii regulyarnosti i ego sledstviyakh”, Mezhdunar. konf. “Maltsevskie chteniya”, posvyaschen. 70-letiyu akad. S.S. Goncharova, tez. dokl. (Novosibirsk, 20-24 sentyabrya 2021 g.), 96