On one method of increasing the smoothness of external penalty functions in linear and convex programming
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 88-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We propose original constructions of external penalty functions in linear and convex programming, which asymptotically reduce constrained optimization problems to unconstrained ones with increased smoothness. The latter admit an effective solution by second-order methods and, at the same time, do not require the knowledge of an interior feasible point of the original problem to start the process. Moreover, the proposed approach is applicable to improper linear and convex programs (problems with contradictory constraint systems), for which they can generate some generalized (compromise) solutions. Convergence theorems and the data of numerical experiments are presented.
Keywords: linear programming, improper (ill-posed) problems, generalized solutions, penalty functions, Newton method.
@article{TIMM_2021_27_4_a6,
     author = {L. D. Popov},
     title = {On one method of increasing the smoothness of external penalty functions in linear and convex programming},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {88--101},
     year = {2021},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a6/}
}
TY  - JOUR
AU  - L. D. Popov
TI  - On one method of increasing the smoothness of external penalty functions in linear and convex programming
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 88
EP  - 101
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a6/
LA  - ru
ID  - TIMM_2021_27_4_a6
ER  - 
%0 Journal Article
%A L. D. Popov
%T On one method of increasing the smoothness of external penalty functions in linear and convex programming
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 88-101
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a6/
%G ru
%F TIMM_2021_27_4_a6
L. D. Popov. On one method of increasing the smoothness of external penalty functions in linear and convex programming. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 88-101. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a6/

[1] Eremin I. I., “Metod shtrafov v vypuklom programmirovanii”, Dokl. AN SSSR, 173:4 (1967), 748–751 | Zbl

[2] Fiakko A., Mak-Kormik G., Nelineinoe programmirovanie. Metody posledovatelnoi bezuslovnoi minimizatsii, Mir, M., 1972, 240 pp.

[3] Zangvill U. I., Nelineinoe programmirovanie. Edinyi podkhod, Sov. radio, M., 1973, 312 pp.

[4] Polak E., Chislenye metody optimizatsii, Mir, M., 1974, 376 pp.

[5] Moiseev N. N., Ivanilov Yu. P., Stolyarova E. M., Metody optimizatsii, Nauka, M., 1978, 351 pp.

[6] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982, 432 pp.

[7] Gill F., Myurrei U., Rait M., Prakticheskaya optimizatsiya, Mir, M., 1985, 509 pp.

[8] Vasilev F.P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988, 552 pp.

[9] Roos C., Terlaky T., Vial J.-Ph., Theory and algorithms for linear optimization, John Wiley Sons Ltd, Chichester, 1997, 484 pp.

[10] Eremin I.I., “Dvoistvennost dlya nesobstvennykh zadach lineinogo i vypuklogo programmirovaniya”, Dokl. AN SSSR, 256:2 (1981), 272–276 | Zbl

[11] Eremin I. I., Mazurov Vl. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp.

[12] Kochikov I.V., Matvienko A.N., Yagola A.G., “Obobschennyi printsip nevyazki dlya resheniya nesovmestnykh uravnenii”, Zhurn. vychisl. matematiki i mat. fiziki, 24:7 (1984), 1087–1090 | Zbl

[13] Popov L. D., “Kombinirovannye shtrafy i obobschennye resheniya nesobstvennykh zadach lineinogo i vypuklogo programmirovaniya 1-go roda”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:3 (2010), 217–226

[14] Popov L. D., “Poisk obobschennykh reshenii nesobstvennykh zadach lineinogo i vypuklogo programmirovaniya s pomoschyu barernykh funktsii”, Izv. Irkutskogo gos. un-ta. Ser. Matematika, 4:2 (2011), 134–146 | Zbl

[15] Popov L. D., “Primenenie barernykh funktsii dlya optimalnoi korrektsii nesobstvennykh zadach lineinogo programmirovaniya 1-go roda”, Avtomatika i telemekhanika, 2012, no. 3, 3–11 | Zbl