Voir la notice du chapitre de livre
@article{TIMM_2021_27_2_a8,
author = {A. R. Danilin},
title = {Asymptotics of a solution to a problem of optimal boundary control with two small cosubordinate parameters. {II}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {108--119},
year = {2021},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a8/}
}
TY - JOUR AU - A. R. Danilin TI - Asymptotics of a solution to a problem of optimal boundary control with two small cosubordinate parameters. II JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 108 EP - 119 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a8/ LA - ru ID - TIMM_2021_27_2_a8 ER -
%0 Journal Article %A A. R. Danilin %T Asymptotics of a solution to a problem of optimal boundary control with two small cosubordinate parameters. II %J Trudy Instituta matematiki i mehaniki %D 2021 %P 108-119 %V 27 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a8/ %G ru %F TIMM_2021_27_2_a8
A. R. Danilin. Asymptotics of a solution to a problem of optimal boundary control with two small cosubordinate parameters. II. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 108-119. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a8/
[1] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 414 pp.
[2] Danilin A.R., “Asimptotika resheniya zadachi optimalnogo granichnogo upravleniya s dvumya malymi sopodchinennymi parametrami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 26:1 (2020), 102–111 | DOI | MR
[3] Casas E., “A review on sparse solutions in optimal control of partial differential equations”, SeMA J., 74 (2017), 319–344 | DOI | MR | Zbl
[4] Lou H., Yong J., “Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls”, Math. Control Relat. Fields, 8:1 (2018), 57–88 | DOI | MR | Zbl
[5] Betz Livia M., “Second-order sufficient optimality conditions for optimal control of nonsmooth, semilinear parabolic equations”, SIAM J. Control Optim., 57:6 (2019), 4033–4062 | DOI | MR | Zbl
[6] Kapustyan V.E., “Asimptotika ogranichennykh upravlenii v optimalnykh ellipticheskikh zadachakh”, Dokl. AN Ukrainy. Cer. Matematika, estestvoznanie, tekhnicheskie nauki, 1992, no. 2, 70–74
[7] Danilin A.R., “Optimalnoe granichnoe upravlenie v oblasti s maloi polostyu”, Ufim. mat. zhurn., 4:2 (2012), 87–100 | MR
[8] Sobolev S.L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950, 255 pp. | MR
[9] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 371 pp.
[10] Danilin A.R., “Asimptotika resheniya bisingulyarnoi zadachi optimalnogo granichnogo upravleniya v ogranichennoi oblasti”, Zhurn. vychisl. matematiki i mat. fiziki, 58:11 (2018), 1808–1814
[11] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp.
[12] Vishik M.I., Lyusternik L.A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5 (1957), 3–122 | Zbl
[13] Ilin A.M., “Pogranichnyi sloi”, Itogi nauki i tekhniki VINITI AN SSSR. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 34, VNITI, M., 1988, 175–214