Asymptotics of a solution to a problem of optimal boundary control with two small cosubordinate parameters. II
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 108-119
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a problem of optimal boundary control for solutions of an elliptic type equation in a bounded domain with smooth boundary with a small coefficient at the Laplace operator, a small coefficient, cosubordinate with the first, at the boundary condition, and integral constraints on the control:
$$
 \left\{
 \begin{array}{ll}
 \displaystyle {\mathcal L}_\varepsilon z\mathop{:=}\nolimits - \varepsilon^2 \Delta z + a(x) z = f(x), 
 \displaystyle                 x\in \Omega,\ \  z \in H^1(\Omega), \\[3ex]
 \displaystyle l_{\varepsilon} z\mathop{:=}\nolimits \varepsilon^\beta \frac{\partial z}{\partial n} = g(x) + u(x), 
 x\in\Gamma,
 \end{array}
 \right.
 $$
$$
 J(u) \mathop{:=}\nolimits \|z-z_d\|^2 + \nu^{-1}|||u|||^2 \to \inf, \quad
  u \in \mathcal{U},
 $$
where $0\varepsilon\ll 1$, $\beta\geqslant 0$, $\beta\in\mathbb{Q}$, $\nu>0,$ $H^1(\Omega)$ is the Sobolev function space, $\partial z/\partial n$ is the derivative of $z$ at the point $x\in\Gamma$ in the direction of the outer (with respect to the domain $\Omega$) normal,
$$
  \begin{array}{c}
  \displaystyle  a(\cdot),  f(\cdot), z_d(\cdot)  \in  C^\infty(\overline{\Omega}),  \quad
  g(\cdot)\in C^\infty(\Gamma),\quad
  \forall\, x\in \overline{\Omega}\quad a(x)\geqslant \alpha^2>0, \\[2ex]
  \displaystyle \mathcal{U} = \mathcal{U}_1,\quad \mathcal{U}_r\mathop{:=}\nolimits \{u(\cdot)\in L_2(\Gamma)\colon
     |||u||| \leqslant r\}.
 \end{array}
 $$
Here $\|\cdot\|$ and $|||\cdot|||$ are the norms in the spaces $L_2(\Omega)$ and $L_2(\Gamma)$, respectively. We find a complete asymptotic expansion of the solution of the problem in powers of the small parameter in the case where $\beta\geqslant 3/2$. In contrast to the previously considered case, the relevance of the constraints on the control depends on $|||g|||$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
singular problems, optimal control, boundary value problems for systems of partial differential equations, asymptotic expansions.
                    
                  
                
                
                @article{TIMM_2021_27_2_a8,
     author = {A. R. Danilin},
     title = {Asymptotics of a solution to a problem of optimal boundary control with two small cosubordinate parameters. {II}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {108--119},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a8/}
}
                      
                      
                    TY - JOUR AU - A. R. Danilin TI - Asymptotics of a solution to a problem of optimal boundary control with two small cosubordinate parameters. II JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 108 EP - 119 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a8/ LA - ru ID - TIMM_2021_27_2_a8 ER -
%0 Journal Article %A A. R. Danilin %T Asymptotics of a solution to a problem of optimal boundary control with two small cosubordinate parameters. II %J Trudy Instituta matematiki i mehaniki %D 2021 %P 108-119 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a8/ %G ru %F TIMM_2021_27_2_a8
A. R. Danilin. Asymptotics of a solution to a problem of optimal boundary control with two small cosubordinate parameters. II. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 108-119. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a8/
