On the solvability of the problem of synthesizing distributed and boundary controls in the optimization of oscillation processes
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 128-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the solvability of the problem of synthesis of distributed and boundary controls in the optimization of oscillation processes described by partial integro-differential equations with the Fredholm integral operator. Functions of external and boundary actions are nonlinear with respect to the controls. For the Bellman functional, an integro-differential equation of a specific form is obtained and the structure of its solution is found, which allows this equation to be represented as a system of two equations of a simpler form. An algorithm for constructing a solution to the problem of synthesizing distributed and boundary controls is described, and a procedure for finding the controls as a function (functional) of the state of the process is described.
Keywords: integro-differential equation, Fredholm operator, generalized solution, Bellman functional, optimal control synthesis.
Mots-clés : Fréchet differential
@article{TIMM_2021_27_2_a10,
     author = {A. Kerimbekov},
     title = {On the solvability of the problem of synthesizing distributed and boundary controls in the optimization of oscillation processes},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {128--140},
     year = {2021},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a10/}
}
TY  - JOUR
AU  - A. Kerimbekov
TI  - On the solvability of the problem of synthesizing distributed and boundary controls in the optimization of oscillation processes
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 128
EP  - 140
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a10/
LA  - ru
ID  - TIMM_2021_27_2_a10
ER  - 
%0 Journal Article
%A A. Kerimbekov
%T On the solvability of the problem of synthesizing distributed and boundary controls in the optimization of oscillation processes
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 128-140
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a10/
%G ru
%F TIMM_2021_27_2_a10
A. Kerimbekov. On the solvability of the problem of synthesizing distributed and boundary controls in the optimization of oscillation processes. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 128-140. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a10/

[1] Butkovskii A.G., Teoriya optimalnogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1965, 476 pp.

[2] Egorov A.I., Optimalnoe upravlenie teplovymi i diffuzionnymi protsessami, Nauka, M., 1978, 464 pp.

[3] Egorov A.I., Znamenskaya L.N., Vvedenie v teoriyu upravleniya sistemami s raspredelennymi parametrami, Lan, SPb., 2017, 292 pp.

[4] Egorov A.I., “Optimal stabilization of systems with distributed parameters”, Optimization Techniques IFIP Technical Conference (1974) (Novosibirsk, 1974), Lecture Notes in Computer Science, 27, ed. G.I. Marchuk, Springer, Berlin; Heidelberg, 1975, 167-172 | DOI

[5] Shenfeld G.B., “Sintez optimalnogo upravleniya uprugoi konstruktsii”, Optimizatsiya protsessov v sistemakh s rapredelennymi parametrami, Ilim, Frunze, 1975, 23–26

[6] Rakhimov M., O sinteze optimalnogo upravleniya uprugimi kolebaniyami, dis. ...kand. fiz.-mat. nauk, Ashkhabad, 1979, 128 pp.

[7] Rakhimov M., Primenenie metodov dinamicheskogo programmirovaniya i spektralnogo razlozheniya k zadacham optimalnogo upravleniya sistemami s raspredelennymi parametrami, avtoreferat dis. ...d-r. fiz.-mat. nauk, MGU im. M.V. Lomonosova, Moskva, 1989, 32 pp.

[8] Kerimbekov A., Nelineinoe optimalnoe upravlenie lineinymi sistemami s raspredelennymi parametrami, Ilim, Bishkek, 2003, 224 pp.

[9] Volterra V.I., Funktsionalnaya teoriya, integralnye i integro-differentsialnye uravneniya, Nauka, M., 1984, 456 pp.

[10] Vladimirov V.S., “Mathematical problems of the uniform-speed theory of transport”, Trudy Mat. Inst. Steklov, 61 (1961), 3–158 | MR

[11] Rikhtmaier R., Printsipy sovremennnoi matematicheskoi fiziki, Mir, M., 1982, 488 pp. | MR

[12] Sachs E.W., Strauss A.K., “Efficient solution of a partial integro-differential equation in finance”, Appl. Numer. Math., 58:11 (2008), 1687–1703 | DOI | MR | Zbl

[13] Thorwe J., Bhaleker S., “Solving partial integro-differential equations using Laplace transform method”, Am. J. Comput. Appl. Math., 2:3 (2012), 101–104 | DOI

[14] Kerimbekov A.K., Abdyldaeva E.F., “Optimal distributed control for the processes of oscillation described by Fredholm integro-differential equations”, Eurasian Math. J., 6:2 (2015), 18–40 | MR | Zbl

[15] Kerimbekov A, Abdyldaeva E.F., “O ravnykh otnosheniyakh v zadache granichnogo vektornogo upravleniya uprugimi kolebaniyami, opisyvaemymi fredgolmovymi integro-differentsialnymi uravneniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:2 (2016), 163–176 | DOI | MR

[16] Kerimbekov A., Abdyldaeva E.F., “On the solvability of a nonlinear tracking problem under boundary control for the elastic oscillations described by Fredholm integro-differential equations”, System Modeling and Optimization (CSMO 2015), IFIP Advances in Information and Communication Technology, 494, eds. L. Bociu, J.-A. Desideri, A. Habbal, Springer, Cham, 2016, 312–321 | DOI | MR

[17] Kerimbekov A., Abdyldaeva E.F, Duyshenalieva U.E., “Generalized solution of a boundary value problem under point exposure of external forces”, International J. Pure Appl. Math., 113:4 (2017), 87–101 | DOI

[18] Kerimbekov A., Abdyldaeva E.F., “The optimal vector control for the elastic oscillations described by Fredholm integral-differential equations”, Analysis and Partial Differential Equations: Perspectives from Developing Countries, Springer Proceedings in Mathematics Statistics, 275, eds. J. Delgado, M. Ruzhansky, Springer, Cham, 2019, 14–30 | DOI | MR | Zbl

[19] Kerimbekov A., Tairova O.K., “On the solvability of synthesis problem for optimal point control of oscillatory processes”, IFAC-PapersOnLine, 51:32 (2018), 754–758 | DOI

[20] Bellman R., “The theory of dynamic programming”, Bull. Amer. Math. Soc., 60:6 (1954), 503–515 | DOI | MR | Zbl

[21] Plotnikov V.I., “Energeticheskoe neravenstvo i svoistvo pereopredelennosti sistemy sobstvennykh funktsii”, Izv. AN SSR. Ser. matematicheskaya, 32:4 (1968), 743–755 | Zbl

[22] Krasnov M., Integralnye uravneniya, Nauka, M., 1975, 304 pp.

[23] Lyusternik L.A., Sobolev V.I., Elementy funktsionalnogo analiza, Nauka, M., 1965, 520 pp.

[24] Smirnov V.I., Kurs vysshei matematiki, Nauka, M., 1974, 480 pp. | MR