@article{TIMM_2021_27_1_a21,
author = {A. A. Kovalevsky},
title = {On the convergence of minimizers and minimum values in variational problems with pointwise functional constraints in variable domains},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {246--257},
year = {2021},
volume = {27},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a21/}
}
TY - JOUR AU - A. A. Kovalevsky TI - On the convergence of minimizers and minimum values in variational problems with pointwise functional constraints in variable domains JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 246 EP - 257 VL - 27 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a21/ LA - en ID - TIMM_2021_27_1_a21 ER -
%0 Journal Article %A A. A. Kovalevsky %T On the convergence of minimizers and minimum values in variational problems with pointwise functional constraints in variable domains %J Trudy Instituta matematiki i mehaniki %D 2021 %P 246-257 %V 27 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a21/ %G en %F TIMM_2021_27_1_a21
A. A. Kovalevsky. On the convergence of minimizers and minimum values in variational problems with pointwise functional constraints in variable domains. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 246-257. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a21/
[1] Murat F., Sur l'homogeneisation d'inequations elliptiques du 2eme ordre, relatives au convexe $K(\psi_1,\psi_2)=\{v\in H^1_0(\Omega) | \psi_1\leqslant v\leqslant\psi_2\text{p.p. dans}\Omega\}$, Publ. Laboratoire d'Analyse Numerique, no. 76013, Univ. Paris VI, 1976, 23 pp.
[2] Dal Maso G., “Asymptotic behaviour of minimum problems with bilateral obstacles”, Ann. Mat. Pura Appl. (4), 129:1 (1981), 327–366 | DOI | MR
[3] Dal Maso G., “Limits of minimum problems for general integral functionals with unilateral obstacles”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 74:2 (1983), 55–61 | MR | Zbl
[4] Boccardo L., Murat F., “Homogenization of nonlinear unilateral problems”, Composite media and homogenization theory, Progr. Nonlinear Differential Equations Appl., 5, Birkhauser, Boston, 1991, 81–105 | DOI | MR
[5] Kovalevsky A.A., “On the convergence of solutions to bilateral problems with the zero lower constraint and an arbitrary upper constraint in variable domains”, Nonlinear Anal., 147 (2016), 63–79 | DOI | MR | Zbl
[6] Dal Maso G., An introduction to $\Gamma$-convergence, Birkhauser, Boston, 1993, 352 pp. | DOI | MR | Zbl
[7] Zhikov V.V., Kozlov S.M., Oleinik O.A., Ha Tien Ngoan, “Averaging and G-convergence of differential operators”, Russian Math. Surveys, 34:5 (1979), 69–147 | DOI | MR
[8] Kovalevsky A.A., “On the convergence of solutions of variational problems with pointwise functional constraints in variable domains”, Ukr. Math. Bull., 17:4 (2020), 509–537 | DOI | MR
[9] Vainberg M.M., Variational method and method of monotone operators in the theory of nonlinear equations, Wiley, N Y, 1974, 368 pp. | MR