On the convergence of minimizers and minimum values in variational problems with pointwise functional constraints in variable domains
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 246-257 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a sequence of convex integral functionals $F_s:W^{1,p}(\Omega_s)\to\mathbb R$ and a sequence of weakly lower semicontinuous and, in general, non-integral functionals $G_s:W^{1,p}(\Omega_s)\to\mathbb R$, where $\{\Omega_s\}$ is a sequence of domains in $\mathbb R^n$ contained in a bounded domain $\Omega\subset\mathbb R^n$ ($n\geqslant 2$) and $p>1$. Along with this, we consider a sequence of closed convex sets $V_s=\{v\in W^{1,p}(\Omega_s): M_s(v)\leqslant 0\,\,\text{a.e. in}\,\,\Omega_s\}$, where $M_s$ is a mapping from $W^{1,p}(\Omega_s)$ to the set of all functions defined on $\Omega_s$. We describe conditions under which minimizers and minimum values of the functionals $F_s+G_s$ on the sets $V_s$ converge to a minimizer and the minimum value of a functional on the set $V=\{v\in W^{1,p}(\Omega): M(v)\leqslant 0\,\,\text{a.e. in}\,\,\Omega\}$, where $M$ is a mapping from $W^{1,p}(\Omega)$ to the set of all functions defined on $\Omega$. In particular, for our convergence results, we require that the sequence of spaces $W^{1,p}(\Omega_s)$ is strongly connected with the space $W^{1,p}(\Omega)$ and the sequence $\{F_s\}$ $\it{\Gamma}$-converges to a functional defined on $W^{1,p}(\Omega)$. In so doing, we focus on the conditions on the mappings $M_s$ and $M$ which, along with the corresponding requirements on the involved domains and functionals, ensure the convergence of solutions of the considered variational problems. Such conditions have been obtained in our recent work, and, in the present paper, we advance in studying them.
Keywords: variational problem; integral functional; pointwise functional constraint; minimizer; minimum value; $\it{\Gamma}$-convergence; strong connectedness; variable domains.
@article{TIMM_2021_27_1_a21,
     author = {A. A. Kovalevsky},
     title = {On the convergence of minimizers and minimum values in variational problems with pointwise functional constraints in variable domains},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {246--257},
     year = {2021},
     volume = {27},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a21/}
}
TY  - JOUR
AU  - A. A. Kovalevsky
TI  - On the convergence of minimizers and minimum values in variational problems with pointwise functional constraints in variable domains
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 246
EP  - 257
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a21/
LA  - en
ID  - TIMM_2021_27_1_a21
ER  - 
%0 Journal Article
%A A. A. Kovalevsky
%T On the convergence of minimizers and minimum values in variational problems with pointwise functional constraints in variable domains
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 246-257
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a21/
%G en
%F TIMM_2021_27_1_a21
A. A. Kovalevsky. On the convergence of minimizers and minimum values in variational problems with pointwise functional constraints in variable domains. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 246-257. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a21/

[1] Murat F., Sur l'homogeneisation d'inequations elliptiques du 2eme ordre, relatives au convexe $K(\psi_1,\psi_2)=\{v\in H^1_0(\Omega) | \psi_1\leqslant v\leqslant\psi_2\text{p.p. dans}\Omega\}$, Publ. Laboratoire d'Analyse Numerique, no. 76013, Univ. Paris VI, 1976, 23 pp.

[2] Dal Maso G., “Asymptotic behaviour of minimum problems with bilateral obstacles”, Ann. Mat. Pura Appl. (4), 129:1 (1981), 327–366 | DOI | MR

[3] Dal Maso G., “Limits of minimum problems for general integral functionals with unilateral obstacles”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 74:2 (1983), 55–61 | MR | Zbl

[4] Boccardo L., Murat F., “Homogenization of nonlinear unilateral problems”, Composite media and homogenization theory, Progr. Nonlinear Differential Equations Appl., 5, Birkhauser, Boston, 1991, 81–105 | DOI | MR

[5] Kovalevsky A.A., “On the convergence of solutions to bilateral problems with the zero lower constraint and an arbitrary upper constraint in variable domains”, Nonlinear Anal., 147 (2016), 63–79 | DOI | MR | Zbl

[6] Dal Maso G., An introduction to $\Gamma$-convergence, Birkhauser, Boston, 1993, 352 pp. | DOI | MR | Zbl

[7] Zhikov V.V., Kozlov S.M., Oleinik O.A., Ha Tien Ngoan, “Averaging and G-convergence of differential operators”, Russian Math. Surveys, 34:5 (1979), 69–147 | DOI | MR

[8] Kovalevsky A.A., “On the convergence of solutions of variational problems with pointwise functional constraints in variable domains”, Ukr. Math. Bull., 17:4 (2020), 509–537 | DOI | MR

[9] Vainberg M.M., Variational method and method of monotone operators in the theory of nonlinear equations, Wiley, N Y, 1974, 368 pp. | MR