Finite totally $k$-closed groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 240-245 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a positive integer $k$, a group $G$ is said to be totally $k$-closed if in each of its faithful permutation representations, say on a set $\Omega$, $G$ is the largest subgroup of Sym$(\Omega)$ which leaves invariant each of the $G$-orbits in the induced action on $\Omega\times\dots\times \Omega=\Omega^k$. We prove that every finite abelian group $G$ is totally $(n(G)+1)$-closed, but is not totally $n(G)$-closed, where $n(G)$ is the number of invariant factors in the invariant factor decomposition of $G$. In particular, we prove that for each $k\geq2$ and each prime $p$, there are infinitely many finite abelian $p$-groups which are totally $k$-closed but not totally $(k-1)$-closed. This result in the special case $k=2$ is due to Abdollahi and Arezoomand. We pose several open questions about total $k$-closure.
Keywords: permutation group; $k$-closure; totally $k$-closed group.
@article{TIMM_2021_27_1_a20,
     author = {D. V. Churikov and Ch. E. Praeger},
     title = {Finite totally $k$-closed groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {240--245},
     year = {2021},
     volume = {27},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a20/}
}
TY  - JOUR
AU  - D. V. Churikov
AU  - Ch. E. Praeger
TI  - Finite totally $k$-closed groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 240
EP  - 245
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a20/
LA  - en
ID  - TIMM_2021_27_1_a20
ER  - 
%0 Journal Article
%A D. V. Churikov
%A Ch. E. Praeger
%T Finite totally $k$-closed groups
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 240-245
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a20/
%G en
%F TIMM_2021_27_1_a20
D. V. Churikov; Ch. E. Praeger. Finite totally $k$-closed groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 240-245. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a20/

[1] Abdollahi A. and Arezoomand M., “Finite nilpotent groups that coincide with their 2-closures in all of their faithful permutation representations”, J. Algebra Appl., 17:4 (2018), 1850065 | DOI | MR | Zbl

[2] Abdollahi A, Arezoomand M. and Tracey G., On finite totally 2-closed groups, 2020, 12 pp., arXiv: math.2001.09597v2

[3] Chen G. and Ponomarenko I., Lectures on Coherent Configurations, Central China Normal University Press, Wuhan, 2019, 369 pp.

[4] Churikov D. and Ponomarenko I., On 2-closed abelian permutation groups, 2020, 10 pp., arXiv: math.2011.12011v1

[5] Evdokimov S. and Ponomarenko I., “Two-closure of odd permutation group in polynomial time”, Discrete Math., 235:1–3 (2001), 221–232 | DOI | MR | Zbl

[6] Praeger C.E. and Schneider C., Permutation groups and Cartesian decompositions, London Mathematical Society Lecture Note Ser., 449, Cambridge University Press, Cambridge, 2018, 323 pp. | DOI | MR | Zbl

[7] Wielandt H.W., Permutation groups through invariant relations and invariant functions, Lecture Notes, Ohio State University, 1969; Wielandt, Helmut, Mathematische Werke (Mathematical works), v. 1, Group theory, Walter de Gruyter Co., Berlin, 1994, 237–296 | MR

[8] 2-closure of a permutation group: Questions / Answers, 2016 URL: http://mathoverflow.net/questions/235114/2-closure-of-a-permutation-group