@article{TIMM_2021_27_1_a20,
author = {D. V. Churikov and Ch. E. Praeger},
title = {Finite totally $k$-closed groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {240--245},
year = {2021},
volume = {27},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a20/}
}
D. V. Churikov; Ch. E. Praeger. Finite totally $k$-closed groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 240-245. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a20/
[1] Abdollahi A. and Arezoomand M., “Finite nilpotent groups that coincide with their 2-closures in all of their faithful permutation representations”, J. Algebra Appl., 17:4 (2018), 1850065 | DOI | MR | Zbl
[2] Abdollahi A, Arezoomand M. and Tracey G., On finite totally 2-closed groups, 2020, 12 pp., arXiv: math.2001.09597v2
[3] Chen G. and Ponomarenko I., Lectures on Coherent Configurations, Central China Normal University Press, Wuhan, 2019, 369 pp.
[4] Churikov D. and Ponomarenko I., On 2-closed abelian permutation groups, 2020, 10 pp., arXiv: math.2011.12011v1
[5] Evdokimov S. and Ponomarenko I., “Two-closure of odd permutation group in polynomial time”, Discrete Math., 235:1–3 (2001), 221–232 | DOI | MR | Zbl
[6] Praeger C.E. and Schneider C., Permutation groups and Cartesian decompositions, London Mathematical Society Lecture Note Ser., 449, Cambridge University Press, Cambridge, 2018, 323 pp. | DOI | MR | Zbl
[7] Wielandt H.W., Permutation groups through invariant relations and invariant functions, Lecture Notes, Ohio State University, 1969; Wielandt, Helmut, Mathematische Werke (Mathematical works), v. 1, Group theory, Walter de Gruyter Co., Berlin, 1994, 237–296 | MR
[8] 2-closure of a permutation group: Questions / Answers, 2016 URL: http://mathoverflow.net/questions/235114/2-closure-of-a-permutation-group