Finite totally $k$-closed groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 240-245

Voir la notice de l'article provenant de la source Math-Net.Ru

For a positive integer $k$, a group $G$ is said to be totally $k$-closed if in each of its faithful permutation representations, say on a set $\Omega$, $G$ is the largest subgroup of Sym$(\Omega)$ which leaves invariant each of the $G$-orbits in the induced action on $\Omega\times\dots\times \Omega=\Omega^k$. We prove that every finite abelian group $G$ is totally $(n(G)+1)$-closed, but is not totally $n(G)$-closed, where $n(G)$ is the number of invariant factors in the invariant factor decomposition of $G$. In particular, we prove that for each $k\geq2$ and each prime $p$, there are infinitely many finite abelian $p$-groups which are totally $k$-closed but not totally $(k-1)$-closed. This result in the special case $k=2$ is due to Abdollahi and Arezoomand. We pose several open questions about total $k$-closure.
Keywords: permutation group; $k$-closure; totally $k$-closed group.
@article{TIMM_2021_27_1_a20,
     author = {D. V. Churikov and Ch. E. Praeger},
     title = {Finite totally $k$-closed groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {240--245},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a20/}
}
TY  - JOUR
AU  - D. V. Churikov
AU  - Ch. E. Praeger
TI  - Finite totally $k$-closed groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 240
EP  - 245
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a20/
LA  - en
ID  - TIMM_2021_27_1_a20
ER  - 
%0 Journal Article
%A D. V. Churikov
%A Ch. E. Praeger
%T Finite totally $k$-closed groups
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 240-245
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a20/
%G en
%F TIMM_2021_27_1_a20
D. V. Churikov; Ch. E. Praeger. Finite totally $k$-closed groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 240-245. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a20/