Keywords: multilayer feedforward neural networks, multilayer neural network subnet.
@article{TIMM_2021_27_1_a13,
author = {A. V. Litavrin},
title = {Endomorphisms of finite commutative groupoids related with multilayer feedforward neural networks},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {130--145},
year = {2021},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a13/}
}
TY - JOUR AU - A. V. Litavrin TI - Endomorphisms of finite commutative groupoids related with multilayer feedforward neural networks JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 130 EP - 145 VL - 27 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a13/ LA - ru ID - TIMM_2021_27_1_a13 ER -
A. V. Litavrin. Endomorphisms of finite commutative groupoids related with multilayer feedforward neural networks. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 130-145. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a13/
[1] Golovko V. A., Krasnoproshin V. V., Neirosetevye tekhnologii obrabotki dannykh, uch. posobie, Izd-vo Belarus. gos. un-ta, Minsk, 2017, 263 pp.
[2] Gorban A. N., “Obobschennaya approksimatsionnaya teorema i vychislitelnye vozmozhnosti neironnykh setei”, Sib. zhurn. vychisl. matematiki, 1:1 (1998), 11–24 | MR
[3] McSulloh W., Pitts W., “A logical calculus of the ideas immanent in nervous activity”, Bulletin Math. Biophysics, 1943, no. 5, 115–133 | MR
[4] Rozenblatt F., Printsipy neirodinamiki: perseptron i teoriya mekhanizmov mozga, per. s angl., Mir, Moskva, 1965, 478 pp.
[5] Litavrin A. V., “Endomorphisms of Some Groupoids of Order $k + k^2$”, Bulletin Irkutsk State University. Ser. Mathematics, 32 (2020), 64–78 | DOI | MR | Zbl
[6] Tsarkov O. I., “Endomorphisms of the semigroup $G_2(r)$ over partially ordered commutative rings without zero divisors and with 1/2”, J. Math. Sc., 201:4 (2014), 534–551, N Y | DOI | MR | Zbl
[7] Zhuchok Yu. V., “Endomorphism semigroups of some free products”, J. Math. Sc., 187:2 (2012), 146–152, N Y | DOI | MR | Zbl
[8] Slepovichev I. I., “Algebraicheskie svoistva abstraktnykh neironnykh setei”, Izv. Sarat. un-ta. Nov. ser. Matematika. Mekhanika. Informatika, 16:1 (2016), 96–103 | DOI | MR | Zbl
[9] Plotkin B.I., Gringlaz L.Ya., Gvaramiya A.A., Elementy algebraicheskoi teorii avtomatov, Vysshaya shkola, M., 1994, 192 pp.
[10] Molchanov V. A., Khvorostukhina E. V., “Ob abstraktnoi opredelyaemosti universalnykh gipergraficheskikh avtomatov polugruppami vkhodnykh signalov”, Chebysh. sb., 20:2 (2019), 259–272 | DOI | MR | Zbl
[11] Litinskii L. B., “O zadache dekompozitsii neironnoi seti na neskolko podsetei”, Mat. modelirovanie, 8:11 (1996), 119–127 | MR
[12] Timofeev A. V., Derin O. A., “Printsipy postroeniya ierarkhicheskikh neironnykh setei dlya analiza multiizobrazhenii”, Tr. SPIIRAN, 10 (2009), 160–166
[13] Kurosh A. G., Lektsii po obschei algebre, Izd. dom “Lan”, SPb., 2007, 560 pp. | MR