On а question concerning the tensor product of modules
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 103-109 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Assume that $G$ is a group, $K$ is an algebraically closed field, and $V_1$ and $V_2$ are $KG$-modules. The following question is considered: under what constraints on $G$, $K$, $V_1$, and $V_2$ does $V_1 \otimes V_2 \cong V_1 \otimes I$ hold, where $I$ is the trivial $KG$-module (of dimension $\dim(V_2)$)? Earlier, when considering a problem of P. Cameron on finite primitive permutation groups, the author obtained and used some results on this question. This work continues the study of the question. The following results were obtained. 1. Assume that $G$ is a nontrivial connected reductive algebraic group, and $V_1$ and $V_2$ are faithful semisimple $KG$-modules. Then $V_1 \otimes V_2 \ncong V_1 \otimes I$. 2. Assume that $G$ is a nontrivial finite group, $\mathrm{char} (K) = 0$, $V_1$ is a $KG$-module, and $V_2$ is a faithful $KG$-module. Then $V_1 \otimes V_2 \cong V_1 \otimes I $ if and only if $V_1$ is the direct sum of $\frac {\dim (V_1)} {|G|}$ regular $KG$-modules. In addition, we consider the question of the possibility that $V_1 \otimes V_2 \cong V_1 \otimes I$ in the case where $G = SL_2(p^n)$, $V_1$ and $V_2$ are simple $KG$-modules, and $\mathrm{char}(K) = p$.
Keywords: finite group, group representation, tensor product of modules.
Mots-clés : algebraic group
@article{TIMM_2021_27_1_a10,
     author = {A. V. Konygin},
     title = {On {\cyra} question concerning the tensor product of modules},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {103--109},
     year = {2021},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a10/}
}
TY  - JOUR
AU  - A. V. Konygin
TI  - On а question concerning the tensor product of modules
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 103
EP  - 109
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a10/
LA  - ru
ID  - TIMM_2021_27_1_a10
ER  - 
%0 Journal Article
%A A. V. Konygin
%T On а question concerning the tensor product of modules
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 103-109
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a10/
%G ru
%F TIMM_2021_27_1_a10
A. V. Konygin. On а question concerning the tensor product of modules. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 103-109. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a10/

[1] Cameron P.J., “Suborbits in transitive permutation groups”, Combinatorics, Proc. NATO Advanced Study Inst. (Breukelen, 1974), v. 3, Math. Centre Tracts, 57, Combinatorial Group Theory, Math. Centrum, Amsterdam, 1974, 98–129 | MR

[2] Curtis Ch.W., Reiner I., Representation theory of finite groups and associative algebras, Interscience Publishers, N Y; London, 1962, 689 pp. | MR | Zbl

[3] Doty S., Henke A., “Decomposition of tensor products of modular irreducibles for $SL_2$”, Q. J. Math., 56:2 (2005), 189–207 | DOI | MR | Zbl

[4] Fulton W., Harris J., Representation theory: A first course, Graduate Texts in Mathematics, Readings in Mathematics, 129, Springer, N Y, 2004, 551 pp. | DOI | MR

[5] Jantzen J.C., Representations of algebraic groups, Mathematical Surveys and Monographs, 107, American Mathematical Society, Providence, 2003, 576 pp. | MR | Zbl

[6] Humphreys J.E., Introduction to Lie algebras and representation theory, Springer, N Y, 2000, 173 pp. | MR

[7] Humphreys J.E., Modular representations of finite groups of Lie type, Cambridge Univ. Press, Cambridge, 2011, 206 pp. | DOI | MR

[8] Liebeck M.W., Nikolov N., Shalev A., “Groups of Lie type as products of $SL_2$ subgroups”, J. Algebra, 326:1 (2011), 201–207 | DOI | MR | Zbl

[9] Malle G., Testerman D., Linear algebraic groups and finite groups of Lie type, Cambridge Univ. Press, Cambridge, 2011, 309 pp. | DOI | MR | Zbl