On а question concerning the tensor product of modules
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 103-109

Voir la notice de l'article provenant de la source Math-Net.Ru

Assume that $G$ is a group, $K$ is an algebraically closed field, and $V_1$ and $V_2$ are $KG$-modules. The following question is considered: under what constraints on $G$, $K$, $V_1$, and $V_2$ does $V_1 \otimes V_2 \cong V_1 \otimes I$ hold, where $I$ is the trivial $KG$-module (of dimension $\dim(V_2)$)? Earlier, when considering a problem of P. Cameron on finite primitive permutation groups, the author obtained and used some results on this question. This work continues the study of the question. The following results were obtained. 1. Assume that $G$ is a nontrivial connected reductive algebraic group, and $V_1$ and $V_2$ are faithful semisimple $KG$-modules. Then $V_1 \otimes V_2 \ncong V_1 \otimes I$. 2. Assume that $G$ is a nontrivial finite group, $\mathrm{char} (K) = 0$, $V_1$ is a $KG$-module, and $V_2$ is a faithful $KG$-module. Then $V_1 \otimes V_2 \cong V_1 \otimes I $ if and only if $V_1$ is the direct sum of $\frac {\dim (V_1)} {|G|}$ regular $KG$-modules. In addition, we consider the question of the possibility that $V_1 \otimes V_2 \cong V_1 \otimes I$ in the case where $G = SL_2(p^n)$, $V_1$ and $V_2$ are simple $KG$-modules, and $\mathrm{char}(K) = p$.
Keywords: finite group, group representation, tensor product of modules.
Mots-clés : algebraic group
@article{TIMM_2021_27_1_a10,
     author = {A. V. Konygin},
     title = {On {\cyra} question concerning the tensor product of modules},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {103--109},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a10/}
}
TY  - JOUR
AU  - A. V. Konygin
TI  - On а question concerning the tensor product of modules
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 103
EP  - 109
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a10/
LA  - ru
ID  - TIMM_2021_27_1_a10
ER  - 
%0 Journal Article
%A A. V. Konygin
%T On а question concerning the tensor product of modules
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 103-109
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a10/
%G ru
%F TIMM_2021_27_1_a10
A. V. Konygin. On а question concerning the tensor product of modules. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 103-109. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a10/