Mots-clés : algebraic group
@article{TIMM_2021_27_1_a10,
author = {A. V. Konygin},
title = {On {\cyra} question concerning the tensor product of modules},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {103--109},
year = {2021},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a10/}
}
A. V. Konygin. On а question concerning the tensor product of modules. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 103-109. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a10/
[1] Cameron P.J., “Suborbits in transitive permutation groups”, Combinatorics, Proc. NATO Advanced Study Inst. (Breukelen, 1974), v. 3, Math. Centre Tracts, 57, Combinatorial Group Theory, Math. Centrum, Amsterdam, 1974, 98–129 | MR
[2] Curtis Ch.W., Reiner I., Representation theory of finite groups and associative algebras, Interscience Publishers, N Y; London, 1962, 689 pp. | MR | Zbl
[3] Doty S., Henke A., “Decomposition of tensor products of modular irreducibles for $SL_2$”, Q. J. Math., 56:2 (2005), 189–207 | DOI | MR | Zbl
[4] Fulton W., Harris J., Representation theory: A first course, Graduate Texts in Mathematics, Readings in Mathematics, 129, Springer, N Y, 2004, 551 pp. | DOI | MR
[5] Jantzen J.C., Representations of algebraic groups, Mathematical Surveys and Monographs, 107, American Mathematical Society, Providence, 2003, 576 pp. | MR | Zbl
[6] Humphreys J.E., Introduction to Lie algebras and representation theory, Springer, N Y, 2000, 173 pp. | MR
[7] Humphreys J.E., Modular representations of finite groups of Lie type, Cambridge Univ. Press, Cambridge, 2011, 206 pp. | DOI | MR
[8] Liebeck M.W., Nikolov N., Shalev A., “Groups of Lie type as products of $SL_2$ subgroups”, J. Algebra, 326:1 (2011), 201–207 | DOI | MR | Zbl
[9] Malle G., Testerman D., Linear algebraic groups and finite groups of Lie type, Cambridge Univ. Press, Cambridge, 2011, 309 pp. | DOI | MR | Zbl