On the Norms of Boman–Shapiro Difference Operators
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 64-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For given $k\in\mathbb{N}$ and $h>0$, an exact inequality $\|W_{2k}(f,h)\|_{C}\le C_{k}\,\|f\|_{C}$ is considered on the space $C=C(\mathbb{R})$ of continuous functions bounded on the real axis $\mathbb{R}=(-\infty,\infty)$ for the Boman–Shapiro difference operator $W_{2k}(f,h)(x):=\displaystyle\frac{(-1)^k}{h}\displaystyle\int\nolimits_{-h}^h\!{\binom {2k} k}^{\!-1}\widehat \Delta_t^{2k}f(x)\Big(1-\frac{|t|}h\Big)\, dt$, where $\widehat\Delta_t^{2k} f(x):=\sum\nolimits_{j=0}^{2k} (-1)^{j} \binom{2k}{j} f(x+jt-kt)$ is the central finite difference of a function $f$ of order $2k$ with step $t$. For each fixed $k\in\mathbb{N}$, the exact constant $C_{k}$ in the above inequality is the norm of the operator $W_{2k}(\cdot,h)$ from $C$ to $C$. It is proved that $C_{k}$ is independent of $h$ and increases in $k$. A simple method is proposed for the calculation of the constant $C_{*}=\lim_{k\to\infty}C_{k}=2.6699263\dots$ with accuracy $10^{-7}$. We also consider the problem of extending a continuous function $f$ from the interval $[-1,1]$ to the axis $\mathbb{R}$. For extensions $g_f:=g_{f,k,h}$, $k\in\mathbb{N}$, $0$, of functions $f\in C[-1,1]$, we obtain new two-sided estimates for the exact constant $C^{*}_{k}$ in the inequality $\|W_{2k}(g_f,h)\|_{C(\mathbb R)}\le C^{*}_{k}\,\omega_{2k}(f,h)$, where $\omega_{2k}(f,h)$ is the modulus of continuity of $f$ of order $2k$. Specifically, for every positive integer $k\ge 6$ and every $h\in\big(0,1/(2k)\big)$, we prove the double inequality $5/12\le C^{*}_{k}\big(2+e^{-2}\big)\,C_{*}$.
Keywords: difference operator, $k$th modulus of continuity, norm estimate.
@article{TIMM_2020_26_4_a3,
     author = {A. G. Babenko and Yu. V. Kryakin},
     title = {On the {Norms} of {Boman{\textendash}Shapiro} {Difference} {Operators}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {64--75},
     year = {2020},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a3/}
}
TY  - JOUR
AU  - A. G. Babenko
AU  - Yu. V. Kryakin
TI  - On the Norms of Boman–Shapiro Difference Operators
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 64
EP  - 75
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a3/
LA  - ru
ID  - TIMM_2020_26_4_a3
ER  - 
%0 Journal Article
%A A. G. Babenko
%A Yu. V. Kryakin
%T On the Norms of Boman–Shapiro Difference Operators
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 64-75
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a3/
%G ru
%F TIMM_2020_26_4_a3
A. G. Babenko; Yu. V. Kryakin. On the Norms of Boman–Shapiro Difference Operators. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 64-75. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a3/

[1] Shapiro H.S., “A Tauberian theorem related to approximation theory”, Acta Math., 120 (1968), 279–292

[2] Shapiro H.S., Smoothing and approximation of functions, v. VIII, Van Nostrand Reinhold Company, New York etc., 1969, 134 pp.

[3] Boman J., Shapiro H.S., “Comparison theorems for a generalized modulus of continuity”, Ark. Mat., 9:1–2 (1971), 91–116

[4] Foucart S., Kryakin Y., Shadrin A., “On the exact constant in the Jackson-Stechkin inequality for the uniform metric”, Constr. Approx., 29:2 (2009), 157–179

[5] Babenko, A.G., Kryakin Yu.V., Staszak P.T., “Special Moduli of Continuity and the Constant in the Jackson-Stechkin Theorem”, Constr. Approx., 38:3 (2013), 339–364

[6] Babenko A.G., Kryakin Yu.V., “O konstantakh v teoreme Dzheksona - Stechkina v sluchae priblizheniya algebraicheskimi mnogochlenami”, Tr. MIAN, 303 (2018), 26–38

[7] Stechkin S.B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matematicheskaya, 15:3 (1951), 219–242

[8] Brudnyi Yu.A., “Priblizhenie funktsii algebraicheskimi mnogochlenami”, Izv. AN SSSR. Ser. matematicheskaya, 32:4, 780–787

[9] Whitney H., “Analytic extensions of differentiable functions defined in closed sets”, Trans. Am. Math. Soc., 36 (1934), 63–89

[10] Whitney H., “Functions differentiable on the boundaries of regions”, Annals of Math. Second Series, 35 (1934), 482–485

[11] Whitney H., “Differentiable functions defined in arbitrary subsets of Euclidean space”, Trans. Amer. math. Soc., 40 (1936), 309–317

[12] Whitney H., “On the extension of differentiable functions”, Bull. Am. Math. Soc., 50 (1944), 76–81

[13] Dzyadyk V.K., “O prodolzhenii funktsii, udovletvoryayuschikh usloviyu Lipshitsa v metrike $L_p$”, Mat. sb., 40 (82):2 (1956), 239–242

[14] Besov O.V., “O prodolzhenii funktsii s sokhraneniem svoistv integralnogo modulya gladkosti vtorogo poryadka”, Mat. sb., 58 (100):2 (1962), 673–684

[15] Besov O.V., “Prodolzhenie funktsii za predely oblasti s sokhraneniem differentsialno-raznostnykh svoistv v $L_p$”, Mat. sb., 66 (108):1 (1965), 80–96

[16] Vinogradov O.L., Zhuk V.V., “Otsenki funktsionalov s izvestnym konechnym naborom momentov cherez moduli nepreryvnosti vysokikh poryadkov v prostranstvakh funktsii, zadannykh na otrezke”, Algebra i analiz, 25:3 (2013), 86–120

[17] Stekloff W., “Sur les problemes de representation des fonctions a l'aide de polynomes, du calcul approche des integrales definies, du developpement des fonctions en series infinies suivant les polynomes et de l'interpolation, consideres au point de vue des idees de Tchebycheff”, Proc. Int. Math. Congr. (Toronto, 1924), v. 1, Univ. Toronto Press, Toronto, 1928, 631–640

[18] Whitney H., “On the functions with bounded n-th differences”, J. Math. Pures Appl., IX. Ser., 36 (1957), 67–95

[19] Kryakin Yu.V., “Whitney's constants and Sendov's conjectures”, Math. Balkanica, New Ser., 16:1–4 (2002), 235–247

[20] Gilewicz J., Shevchuk I.A., Kryakin Yu.V., “Boundedness by 3 of the Whitney interpolation constant”, J. Approx. Theory, 119:2 (2002), 271–290

[21] Kryakin Yu.V., “On the theorem of H.Whitney in spaces $L_p, 1 \le p \le\infty$”, Math. Balkanica, New Ser., 4:3 (1990), 258–271

[22] Kryakin, Yu.V., Kovalenko, L.G., “O konstantakh Uitni v klassakh $L_p, 1 \le p \le \infty$”, Izv. vuzov. Matem., 1992, no. 1, 69–77