@article{TIMM_2020_26_4_a19,
author = {D. A. Yamkovoi},
title = {Harmonic interpolating wavelets in the {Neumann} boundary value problem in a ring},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {279--289},
year = {2020},
volume = {26},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a19/}
}
D. A. Yamkovoi. Harmonic interpolating wavelets in the Neumann boundary value problem in a ring. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 279-289. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a19/
[1] Subbotin Yu.N., Chernykh N. I., “Garmonicheskie vspleski v kraevykh zadachakh dlya garmonicheskikh i bigarmonicheskikh funktsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:4 (2010), 281–296 | DOI
[2] Meyer Y, Ondelettes et operateurs, Herman, Paris, 1990, 215 pp.
[3] Offin D., Oskolkov K., “A note on orthonormal polynomial bases and wavelets”, Constructive Approximation, 9 (1993), 319–325 | DOI
[4] Subbotin Yu.N., Chernykh N. I., “Interpolyatsionnye vspleski v kraevykh zadachakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:4 (2016), 257–268 | DOI
[5] Subbotin Yu.N., Chernykh N. I., “Interpolyatsionno-ortogonalnye sistemy vspleskov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:3 (2008), 153–161 | DOI
[6] Yamkovoi D., “Harmonic interpolating wavelets in Neumann boundary value problem in a circle”, Ural Math. J., 5:1 (2019), 91–100 | DOI
[7] Goluzin G.M., “Reshenie osnovnykh ploskikh zadach matematicheskoi fiziki dlya sluchaya uravneniya Laplace'a i mnogosvyaznykh oblastei, ogranichennykh okruzhnostyami (metod funktsionalnykh uravnenii)”, Mat. sb., 41:2 (1934), 246–276