On a refinement of Marcinkiewicz-Zygmund type inequalities
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 196-209
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The main goal of this paper is to verify a refined Marcinkiewicz–Zygmund type inequality with a quadratic error term
$$
\frac{1}{2}\sum_{j=0}^{nm-1}(x_{j+1}-x_{j-1})w(x_j)|t_n(x_{j})|^q=(1+O(m^{-2}))\int\limits_{-\pi}^{\pi}w(x)|t_n(x)|^q\,dx, \quad 2\leq q\infty,
$$
where $t_n$ is any trigonometric polynomial of degree at most $n, \ -\pi=x_0$, and $w$ is a Jacobi type weight. Moreover, the quadratic error term $O(m^{-2})$ is shown to be sharp, in general. In addition, similar results are given for $q=\infty$ and in the multivariate case.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
multivariate polynomials; Marcinkiewicz-Zygmund, Bernstein, and Schur type inequalities; discretization of $L^p$ norm; doubling and Jacobi type weights.
                    
                    
                    
                  
                
                
                @article{TIMM_2020_26_4_a12,
     author = {A. V. Kro\'o},
     title = {On a refinement of {Marcinkiewicz-Zygmund} type inequalities},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {196--209},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a12/}
}
                      
                      
                    A. V. Kroó. On a refinement of Marcinkiewicz-Zygmund type inequalities. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 196-209. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a12/
