Some supplements to S. B. Stechkin's inequalities in direct and inverse theorems on the approximation of continuous periodic functions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 155-181 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We give some supplements and comments to inequalities between elements of the sequence of best approximations $\{E_{n-1}(f)\}_{n=1}^{\infty}$ and the $k$th-order moduli of smoothness $\omega_k(f^{(r)};\delta),$ $\delta\in [0,+\infty)$, of a function $f\in C^r(\mathbb{T})$, where $k\in \mathbb{N},$ $r\in \mathbb{Z}_+$, $f^{(0)}\equiv f,$ $C^0(\mathbb{T})\equiv C(\mathbb{T}),$ and $\mathbb{T}=(-\pi,\pi]$, which were published by S. B. Stechkin in 1951 in the study of direct and inverse theorems of approximation of $2\pi$-periodic continuous functions. In particular, we prove the following results: $\mathrm{(a)}$ the direct theorem or the Jackson–Stechkin inequality: $E_{n-1}(f)\le C_1(k)\omega_k(f;\pi/n)$, $n\in \mathbb{N}$, can be strengthened as $E_{n-1}(f)\le \rho_{n}^{(k)}(f)\equiv n^{-k}\max\{\nu^k E_{\nu-1}(f)\colon 1\le \nu\le n\}\le 2^kC_1(k)\omega_k(f;\pi/n),\ n\in \mathbb{N}$. This inequality is order-sharp on the class of all functions $f\in C(\mathbb{T})$ with a given majorant or with a given decrease order of the modulus of smoothness $\omega_k(f;\delta)$; namely: for any $k\in \mathbb{N}$ and $\omega\in \Omega_k(0,\pi]$, there exists a function $f_0(\,{\cdot}\,;\omega)\in C(\mathbb{T})$ ($f_0$ is even for odd $k$ and is odd for even $k$) such that $\omega_k(f_0;\delta)\asymp C_2(k)\omega(\delta)$, $\delta\in (0,\pi]$. Moreover, order equalities hold: $E_{n-1}(f_0)\asymp C_3(k)\rho_n^{(k)}(f_0)\asymp C_4(k)\omega_k(f_0;\pi/n)\asymp C_5(k)\omega(\pi/n),\ n\in \mathbb{N}$, where $\Omega_k(0,\pi]$ is the class of functions $\omega=\omega(\delta)$ defined on $(0,\pi]$ and such that $0\omega(\delta)\!\downarrow\!0$ $(\delta\downarrow\!0)$ and $\delta^{-k}\omega(\delta)\!\downarrow$ $(\delta \uparrow)$; $\mathrm{(b)}$ a necessary and sufficient condition under which the inverse theorem (without the derivatives), or the Salem–Stechkin inequality $\omega_k(f;\pi/n)\le C_6(k)n^{-k}\sum_{\nu=1}^n\nu^{k-1}E_{\nu-1}(f)$, $n\in \mathbb{N}$, holds is Stechkin's inequality $\|T_n^{(k)}(f)\|\le C_7(k) \sum_{\nu=1}^{n}\nu^{k-1}E_{\nu-1}(f),\ n\in \mathbb{N}$, where $T_n(f)\equiv T_n(f;x)$ is a trigonometric polynomial of best $C(\mathbb{T})$-approximation to the function $f$ (i.e., $\|f-T_n(f)\|=E_n(f),\ n\in \mathbb{Z}_+$); $\mathrm{(c)}$ the inverse theorem (with the derivatives), or the Vallée-Poussin–Stechkin inequality $\omega_k(f^{(r)};$ $\pi/n)\le C_8(k,r)\big\{ n^{-k}\sum_{\nu=1}^{n}\nu^{k+r-1}E_{\nu-1}(f)+\sum_{\nu=n+1}^{\infty}\nu^{r-1}E_{\nu-1}(f)\big\}$ for any $n\in \mathbb{N}$, as well as Stechkin's earlier inequality $E_{n-1}(f^{(r)})\le C_9(r)\big\{ n^r E_{n-1}(f)+\sum_{\nu=n+1}^{\infty}\nu^{r-1}E_{\nu-1}(f)\big\},\ n\in \mathbb{N}$, where $E(f;r)\equiv$ $ \sum_{n=1}^{\infty}n^{r-1}E_{n-1}(f)\infty$ (by S. N. Bernstein's theorem, this inequality guarantees that $f$ lies in $C^r(\mathbb{T})$, where $r\in\mathbb{N}$) can be supplemented with the following key inequalities: $\|f^{(r)}\|\le C_{10}(r)E(f;r)$ and $\|T_n^{(r)}(f)\|\le C_{7}(r)\sum_{\nu=1}^n\nu^{r-1}E_{\nu-1}(f)$, $n\in\mathbb{N}$. Moreover, all the inequalities formulated in this paragraph are pairwise equivalent; i.e., any of these inequalities implies any other and, hence, all the inequalities.
Keywords: best approximation, modulus of smoothness, direct theorem, inverse theorem, order equality, equivalent inequalities, order-sharp inequality on a class.
@article{TIMM_2020_26_4_a10,
     author = {N. A. Ilyasov},
     title = {Some supplements to {S.} {B.} {Stechkin's} inequalities in direct and inverse theorems on the approximation of continuous periodic functions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {155--181},
     year = {2020},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a10/}
}
TY  - JOUR
AU  - N. A. Ilyasov
TI  - Some supplements to S. B. Stechkin's inequalities in direct and inverse theorems on the approximation of continuous periodic functions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 155
EP  - 181
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a10/
LA  - ru
ID  - TIMM_2020_26_4_a10
ER  - 
%0 Journal Article
%A N. A. Ilyasov
%T Some supplements to S. B. Stechkin's inequalities in direct and inverse theorems on the approximation of continuous periodic functions
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 155-181
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a10/
%G ru
%F TIMM_2020_26_4_a10
N. A. Ilyasov. Some supplements to S. B. Stechkin's inequalities in direct and inverse theorems on the approximation of continuous periodic functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 155-181. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a10/

[1] Stechkin S.B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matematicheskaya, 15:3 (1951), 219–242

[2] Stechkin S.B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Dokl. AN SSSR, 65:2 (1949), 135–137

[3] Stechkin S.B., “Obobschenie nekotorykh neravenstv S. N. Bernshteina”, Dokl. AN SSSR, 60:9 (1948), 1511–1514

[4] Jackson D., Uber die Genauigkeit der Annaherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung, Inaugural-Dissertation, Gottingen, 1911

[5] Jackson D., “On approximation by trigonometric sums and polynomials”, Trans. Amer. Math. Soc., 13:4 (1912), 491–515

[6] Jackson D., The theory of approximation, Amer. Math. Soc. Colloquium Publ, 11, N.-Y., 1930, 178 pp.

[7] Zygmund A., “Smooth functions”, Duke Math. J., 12:1 (1945), 47–76 | DOI

[8] Vallee Poussin Ch.-J., Lecons sur l'approximation des fonctions d'une variable reelle, Gauthier-Villars, Paris, 1919, 150 pp.

[9] Akhiezer N.I., Lektsii po teorii approksimatsii, 1-e izd., GITTL, M.-L., 1947, 324 pp.; 2-е изд., Наука, М., 1965, 408 с.

[10] Timan A.F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960, 624 pp.

[11] Bernshtein S.N., “O svoistvakh odnorodnykh funktsionalnykh klassov”, Dokl. AN SSSR, 57:2 (1947), 111–114

[12] Geit V.E., “Teoremy vlozheniya dlya nekotorykh klassov periodicheskikh nepreryvnykh funktsii”, Izv. vuzov. Matematika, 1972, no. 4 (119), 67–77

[13] Zhuk V.V., Approksimatsiya periodicheskikh funktsii, Izd-vo Leningr. un-ta, L., 1982, 368 pp.

[14] Natanson G.I., Timan M.F., “Srednie geometricheskie posledovatelnosti nailuchshikh priblizhenii”, Vestn. Leningr. un-ta Ser. No19, 1979, no. 4, 50–52

[15] Natanson I.P., Konstruktivnaya teoriya funktsii, GITTL, M.-L., 1949, 688 pp.

[16] Dzyadyk V.K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii, Nauka, M., 1977, 512 pp.

[17] Bari N.K., Trigonometricheskie ryady, Fizmatgiz, M., 1961, 936 pp.

[18] Zhuk V.V., “Ob odnom metode summirovaniya ryadov Fure. Ryady Fure s polozhitelnymi koeffitsientami”, Issledovaniya po nekotorym problemam konstruktivnoi teorii funktsii, sb. nauch. tr. Leningr. mekhan. in-ta, no. 50, L., 1965, 73–92

[19] Belov A.S., “O poryadkovykh otsenkakh nailuchshikh priblizhenii i modulei nepreryvnosti summy trigonometricheskogo ryada s kvazimonotonnymi koeffitsientami”, Mat. zametki, 51:4 (1992), 132–134

[20] Zigmund A., Trigonometricheskie ryady, v 2 t., v. 1, Mir, M., 1965, 616 pp.; т. 2, 538 с.

[21] Riesz M., “Eine trigonometrische Interpolationsformel und einige Ungleichungen fur Polynome”, Jahresber. Deutsch. Math.-Verein, 23 (1914), 354–368

[22] Nikolskii S.M., “Obobschenie odnogo neravenstva S. N. Bernshteina”, Dokl. AN SSSR, LX:9 (1948), 1507–1510

[23] Timan A.F., Timan M.F., “Obobschennyi modul nepreryvnosti i nailuchshee priblizhenie v srednem”, Dokl. AN SSSR, 71:1 (1950), 17–20

[24] Bari N.K., Stechkin S.B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Mosk. mat. ob -va, 5 (1956), 483–522

[25] Timan A.F., Timan M.F., “O zavisimosti mezhdu modulyami gladkosti funktsii, zadannykh na vsei veschestvennoi osi”, Dokl. AN SSSR, 113:5 (1957), 995–997

[26] Salem R., “Sur certaines fonctions continues et les proprietes de leurs series de Fourier”, Comptes Rendus de L'Acad. des Sci., 201:16 (1935), 703–705

[27] Salem R., Essais sur les series trigonometriques, Theses le grade de docteur es-sciences mathematiques, Paris, 1940, 85 pp.

[28] Bernshtein S.N., “O nailuchshem priblizhenii nepreryvnykh funktsii posredstvom mnogochlenov dannoi stepeni, I”, Soobscheniya Kharkov. mat. ob-va. Vtoraya ser., 13:2–3 (1912), 49–144

[29] Quade E.S., “Trigonometric approximation in the mean”, Duke Math. J., 3:3 (1937), 529–543 | DOI