Analog of the Hadamard Theorem and Related Extremal Problems on the Class of Analytic Functions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 32-47

Voir la notice de l'article provenant de la source Math-Net.Ru

We study several related extremal problems for analytic functions in a finitely connected domain $G$ with rectifiable Jordan boundary $\Gamma$. A sharp inequality is established between values of a function analytic in $G$ and weighted means of its boundary values on two measurable subsets $\gamma_1$ and $\gamma_0=\Gamma\setminus\gamma_1$ of the boundary: $$ |f(z_0)| \le \mathcal{C}\, \|f\|^{\alpha}_{L^{q}_{\varphi_1}(\gamma_1)}\, \|f\|^{\beta}_{L^{p}_{\varphi_0}(\gamma_0)},\quad z_0\in G, \quad 0, p\le\infty.$$ The inequality is an analog of Hadamard's three-circle theorem and the Nevanlinna brothers' two-constant theorem. In the case of a doubly connected domain $G$ and $1\le q,p\le\infty$, we study the cases where the inequality provides the value of the modulus of continuity for a functional of analytic extension of a function from the part $\gamma_1$ of the boundary to a given point of the domain. In these cases, the corresponding problem of optimal recovery of a function from its approximate boundary values on $\gamma_1$ and the problem of the best approximation of a functional by bounded linear functionals are solved. The case of a simply connected domain $G$ has been completely investigated previously.
Keywords: analytic functions, optimal recovery of a functional, best approximation of an unbounded functional by bounded functionals, harmonic measure.
@article{TIMM_2020_26_4_a1,
     author = {R. R. Akopyan},
     title = {Analog of the {Hadamard} {Theorem} and {Related} {Extremal} {Problems} on the {Class} of {Analytic} {Functions}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {32--47},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a1/}
}
TY  - JOUR
AU  - R. R. Akopyan
TI  - Analog of the Hadamard Theorem and Related Extremal Problems on the Class of Analytic Functions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 32
EP  - 47
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a1/
LA  - ru
ID  - TIMM_2020_26_4_a1
ER  - 
%0 Journal Article
%A R. R. Akopyan
%T Analog of the Hadamard Theorem and Related Extremal Problems on the Class of Analytic Functions
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 32-47
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a1/
%G ru
%F TIMM_2020_26_4_a1
R. R. Akopyan. Analog of the Hadamard Theorem and Related Extremal Problems on the Class of Analytic Functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 32-47. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a1/