On the Pronormality of Second Maximal Subgroups in Finite Groups with Socle $L_2(q)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 32-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

According to P. Hall, a subgroup $H$ of a finite group $G$ is called pronormal in $G$ if, for any element $g$ of $G$, the subgroups $H$ and $H^g$ are conjugate in $\langle H,H^g\rangle$. The simplest examples of pronormal subgroups of finite groups are normal subgroups, maximal subgroups, and Sylow subgroups. Pronormal subgroups of finite groups were studied by a number of authors. For example, Legovini (1981) studied finite groups in which every subgroup is subnormal or pronormal. Later, Li and Zhang (2013) described the structure of a finite group $G$ in which, for a second maximal subgroup $H$, its index in $\langle H,H^g\rangle$ does not contain squares for any $g$ from $G$. A number of papers by Kondrat'ev, Maslova, Revin, and Vdovin (2012–2019) are devoted to studying the pronormality of subgroups in a finite simple nonabelian group and, in particular, the existence of a nonpronormal subgroup of odd index in a finite simple nonabelian group. In {The Kourovka Notebook}, the author formulated Question 19.109 on the equivalence in a finite simple nonabelian group of the condition of pronormality of its second maximal subgroups and the condition of Hallness of its maximal subgroups. Tyutyanov gave a counterexample $L_2(2^{11})$ to this question. In the present paper, we provide necessary and sufficient conditions for the pronormality of second maximal subgroups in the group $L_2(q)$. In addition, for $q\le 11$, we find the finite almost simple groups with socle $L_2(q)$ in which all second maximal subgroups are pronormal.
Keywords: finite group, maximal subgroup, pronormal subgroup.
Mots-clés : simple group
@article{TIMM_2020_26_3_a3,
     author = {V. I. Zenkov},
     title = {On the {Pronormality} of {Second} {Maximal} {Subgroups} in {Finite} {Groups} with {Socle} $L_2(q)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {32--43},
     year = {2020},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a3/}
}
TY  - JOUR
AU  - V. I. Zenkov
TI  - On the Pronormality of Second Maximal Subgroups in Finite Groups with Socle $L_2(q)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 32
EP  - 43
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a3/
LA  - ru
ID  - TIMM_2020_26_3_a3
ER  - 
%0 Journal Article
%A V. I. Zenkov
%T On the Pronormality of Second Maximal Subgroups in Finite Groups with Socle $L_2(q)$
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 32-43
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a3/
%G ru
%F TIMM_2020_26_3_a3
V. I. Zenkov. On the Pronormality of Second Maximal Subgroups in Finite Groups with Socle $L_2(q)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 32-43. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a3/

[1] Legovini P., “Gruppi finiti i cui sottogruppi sono o subnormali o pronormali”, Rend. Sem. Math. Univ. Padova, 65 (1981), 47–51 | MR | Zbl

[2] Li S., Chzhan S., “Ob indeksakh podgrupp v soedinenii ikh sopryazhennykh par”, Sib. mat. zhurn., 54:4 (2013), 826–837 | MR

[3] Vdovin E.P., Revin D.O., “Pronormality of Hall subgroups in finite simple groups”, Siberian Math. J., 53:3 (2012), 419–430 | MR | Zbl

[4] Kondrat'ev A.S., Maslova N.V., Revin D.O., “On the pronormality of subgroups of odd index in finite simple groups”, Siberian Math. J., 56:6 (2015), 1101–1107 | DOI | MR | Zbl

[5] Kondrat'ev A.S., Maslova N.V., Revin D.O., “A pronormality criterion for supplements to abelian normal subgroups”, Proc. Steklov Inst. Math. (Suppl.), 296, no. Suppl. 1, 2017, 145–150 | DOI | MR

[6] Unsolved problems in group theory, [e-resource], The Kourovka notebook, 19, eds. Evgeny Khukhro and Victor Mazurov, Novosibirsk, 2020, 250 pp. URL: http://kourovka-notebook.org | MR

[7] Dickson L.E., Linear Group: with an exposition of the Galois field theory, Teubner, Leipzig, 1901; Dover Publ., Inc., New York, 1958 | Zbl

[8] Huppert B., Endliche Gruppen I., Springer-Verlag, Berlin; Heidefferg; N Y, 1967, 793 pp. | MR | Zbl

[9] Giudici M., Maximal subgroups of almost simple groups with socle $PSL(2,q)$, [e-resource], 2007, 11 pp., arXiv: math/0703685 | MR

[10] Bray J.N. [at al.], The maximal subgroups of the low-dimensional finite classical groups, University Press, Cambridge, 2013, 435 pp. | DOI | MR | Zbl

[11] Conway J.H. [et. al.], Atlas of finite group, Clarendon Press, Oxford, 1985, 252 pp. | MR

[12] Aschbacher M., Finite group theory, Cambridge University Press, Cambridge, 1986, 274 pp. | MR | Zbl