Mots-clés : simple group
@article{TIMM_2020_26_3_a3,
author = {V. I. Zenkov},
title = {On the {Pronormality} of {Second} {Maximal} {Subgroups} in {Finite} {Groups} with {Socle} $L_2(q)$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {32--43},
year = {2020},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a3/}
}
V. I. Zenkov. On the Pronormality of Second Maximal Subgroups in Finite Groups with Socle $L_2(q)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 32-43. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a3/
[1] Legovini P., “Gruppi finiti i cui sottogruppi sono o subnormali o pronormali”, Rend. Sem. Math. Univ. Padova, 65 (1981), 47–51 | MR | Zbl
[2] Li S., Chzhan S., “Ob indeksakh podgrupp v soedinenii ikh sopryazhennykh par”, Sib. mat. zhurn., 54:4 (2013), 826–837 | MR
[3] Vdovin E.P., Revin D.O., “Pronormality of Hall subgroups in finite simple groups”, Siberian Math. J., 53:3 (2012), 419–430 | MR | Zbl
[4] Kondrat'ev A.S., Maslova N.V., Revin D.O., “On the pronormality of subgroups of odd index in finite simple groups”, Siberian Math. J., 56:6 (2015), 1101–1107 | DOI | MR | Zbl
[5] Kondrat'ev A.S., Maslova N.V., Revin D.O., “A pronormality criterion for supplements to abelian normal subgroups”, Proc. Steklov Inst. Math. (Suppl.), 296, no. Suppl. 1, 2017, 145–150 | DOI | MR
[6] Unsolved problems in group theory, [e-resource], The Kourovka notebook, 19, eds. Evgeny Khukhro and Victor Mazurov, Novosibirsk, 2020, 250 pp. URL: http://kourovka-notebook.org | MR
[7] Dickson L.E., Linear Group: with an exposition of the Galois field theory, Teubner, Leipzig, 1901; Dover Publ., Inc., New York, 1958 | Zbl
[8] Huppert B., Endliche Gruppen I., Springer-Verlag, Berlin; Heidefferg; N Y, 1967, 793 pp. | MR | Zbl
[9] Giudici M., Maximal subgroups of almost simple groups with socle $PSL(2,q)$, [e-resource], 2007, 11 pp., arXiv: math/0703685 | MR
[10] Bray J.N. [at al.], The maximal subgroups of the low-dimensional finite classical groups, University Press, Cambridge, 2013, 435 pp. | DOI | MR | Zbl
[11] Conway J.H. [et. al.], Atlas of finite group, Clarendon Press, Oxford, 1985, 252 pp. | MR
[12] Aschbacher M., Finite group theory, Cambridge University Press, Cambridge, 1986, 274 pp. | MR | Zbl